矩形紙片ABCD的邊長AB=8,AD=4,將矩形紙片沿EF折疊,使點A與點C重合,折疊后在某一面著色(如圖),則著色部分的面積為( 。
A.16B.C.22D.8
C

試題分析:根據(jù)折疊的性質(zhì)可知著色部分的面積等于S矩形ABCD﹣SCEF,應(yīng)先利用勾股定理求得FC的長,進(jìn)而求得△CEF的面積,代入求值即可.
解:由折疊的性質(zhì)可得:CG=AD=4,GF=DF=CD﹣CF,∠G=90°,
則△CFG為直角三角形,
在Rt△CFG中,F(xiàn)C2﹣CG2=FG2
即FC2﹣42=(8﹣FC)2,
解得:FC=5,
∴SCEF=FC•AD=×5×4=10,
則著色部分的面積為:S矩形ABCD﹣SCEF=AB•AD﹣10=8×4﹣10=22.
故選C.
點評:本題通過折疊變換考查學(xué)生的邏輯思維能力,解決此類問題,應(yīng)結(jié)合題意,由折疊得到相等的邊,相等的角,并利用勾股定理求解,要求同學(xué)們熟練掌握矩形和三角形的面積公式以及圖形面積的轉(zhuǎn)換.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在由邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上.
請按要求完成下列各題:
(1)畫AD∥BC(D為格點),連接CD;
(2)試判斷△ABC的形狀?請說明理由;
(3)若E為BC中點,F(xiàn)為AD中點.四邊形AECF是什么特殊的四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點,連接AF交對角線BD于點E,連接EC.

(1)求證:AE=EC;
(2)當(dāng)∠ABC=60°,∠CEF=60°時,點F在線段BC上的什么位置?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,已知∠A=60°,AB=5,則△ABD的周長是
A.10B.12C.15D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

用下列一種多邊形不能鋪滿地面的是
A.正方形B.正十邊形C.正六邊形D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知菱形的周長為40cm,一條對角線長為16cm,則這個菱形的面積為  cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,∠BAD=120°.已知△ABC的周長是15,則菱形ABCD的周長是
A.25B.20C.15D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中,錯誤的是
A.矩形的對角線互相平分且相等
B.對角線互相垂直的四邊形是菱形
C.等腰梯形的兩條對角線相等
D.對角線互相垂直、平分且相等的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在四邊形ABCD中,已知AB不平行CD,∠ABD=∠ACD,請你添加一個條件:     ,使得加上這個條件后能夠推出AD∥BC且AB=CD.
 

查看答案和解析>>

同步練習(xí)冊答案