【題目】如圖,正方形ABCD的邊長為2,.過B作BE//AC.
(1)求BE與AC之間的距離;
(2)F為BE上一點(diǎn),連接AF,過C作CG//AF交BE于G.若∠FAB=15°,
①依題意補(bǔ)全圖形;
②求證:四邊形AFGC是菱形.
【答案】(1);(2)①見解析;②見解析.
【解析】
(1)連結(jié)BD交AC于O點(diǎn),如圖,利用正方形的性質(zhì)得到AC⊥BD,BO=,由于BE∥AC,于是可判斷BE與AC之間的距離為;
(2)①根據(jù)幾何語言畫出對應(yīng)圖形;
②設(shè)OB與AF交于點(diǎn)H,先證明四邊形AFGC是平行四邊形,再計(jì)算出AH=,HF=,從而得到AF=AH+HF=2=AC,于是可判斷四邊形AFGC是菱形.
解:(1)連結(jié)BD交AC于O點(diǎn),如圖,
∵四邊形ABCD為正方形,
∴AC⊥BD,BO=BD=×2=,
∵BE∥AC,
∴OB⊥BE,
∴BE與AC之間的距離為,
故答案為:;
(2)①如圖,四邊形AFGC為所作;
②設(shè)OB與AF交于點(diǎn)H,
∵CG∥AF,AC∥FG,
∴四邊形AFGC是平行四邊形,
∵四邊形ABCD為正方形,
∴OA=OB=,AC=2,∠AOB=90°,∠OAB=45°,
∵∠FAB=15°,
∴∠OAF=30°,
在Rt△OAH中,OH=OA=,AH=2OH=,
∴BH=OH=,
∵AC∥BE,
∴∠BFA=∠OAF=30°,
∴HF=2BH=2()=2,
∴AF=AH+HF=+2=2,
∴AC=AF,
∴四邊形AFGC是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一組有規(guī)律的圖案,第①個(gè)圖集中有4個(gè)三角形,第②個(gè)圖案中有7個(gè)三角形,第③個(gè)圖案中有10個(gè)三角形,……依此規(guī)律,第⑦個(gè)圖案中有______個(gè)三角形,第n個(gè)圖案中有______個(gè)三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小張某天上午營運(yùn)全是在東西走向的政府大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午的行程是(單位:千米):+15,-3,+16,-11,+10,-12,+4,-15,+16,-18.
(1)將最后一名乘客送達(dá)目的地時(shí),小張距上午出發(fā)點(diǎn)的距離是多少千米?在出發(fā)點(diǎn)的什么方向?
(2)若汽車耗油量為0.6升/千米,出車時(shí),郵箱有油72.2升,若小張將最后一名乘客送達(dá)目的地,再返回出發(fā)地,問小張今天上午是否需要加油?若要加油至少需要加多少才能返回出發(fā)地?若不用加油,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某軟件科技公司20人負(fù)責(zé)研發(fā)與維護(hù)游戲、網(wǎng)購、視頻和送餐共4款軟件.投入市場后,游戲軟件的利潤占這4款軟件總利潤的40%.如圖是這4款軟件研發(fā)與維護(hù)人數(shù)的扇形統(tǒng)計(jì)圖和利潤的條形統(tǒng)計(jì)圖.
根據(jù)以上信息,網(wǎng)答下列問題
(1)直接寫出圖中a,m的值;
(2)分別求網(wǎng)購與視頻軟件的人均利潤;
(3)在總?cè)藬?shù)和各款軟件人均利潤都保持不變的情況下,能否只調(diào)整網(wǎng)購與視頻軟件的研發(fā)與維護(hù)人數(shù),使總利潤增加60萬元?如果能,寫出調(diào)整方案;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對給定的一張矩形紙片ABCD進(jìn)行如下操作:先沿CE折疊,使點(diǎn)B落在CD邊上(如圖①),再沿CH折疊,這時(shí)發(fā)現(xiàn)點(diǎn)E恰好與點(diǎn)D重合(如圖②)
(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;
(2)將該矩形紙片展開.
①如圖③,折疊該矩形紙片,使點(diǎn)C與點(diǎn)H重合,折痕與AB相交于點(diǎn)P,再將該矩形紙片展開.求證:∠HPC=90°;
②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點(diǎn),要求只有一條折痕,且點(diǎn)P在折痕上,請簡要說明折疊方法.(不需說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D是AC的中點(diǎn),F為AB邊上一點(diǎn),且AF=2BF,E為射線BC上一點(diǎn),∠EDF=120°,則=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小張某天上午營運(yùn)全是在東西走向的政府大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午的行程是(單位:千米):+15,-3,+16,-11,+10,-12,+4,-15,+16,-18.
(1)將最后一名乘客送達(dá)目的地時(shí),小張距上午出發(fā)點(diǎn)的距離是多少千米?在出發(fā)點(diǎn)的什么方向?
(2)若汽車耗油量為0.6升/千米,出車時(shí),郵箱有油72.2升,若小張將最后一名乘客送達(dá)目的地,再返回出發(fā)地,問小張今天上午是否需要加油?若要加油至少需要加多少才能返回出發(fā)地?若不用加油,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,已知△ABC,∠ABC=90°,頂點(diǎn)A在第一象限,B,C在x軸的正半軸上(C在B的右側(cè)),BC=2,AB=2,△ADC與△ABC關(guān)于AC所在的直線對稱.
(1)當(dāng)OB=2時(shí),求點(diǎn)D的坐標(biāo);
(2)若點(diǎn)A和點(diǎn)D在同一個(gè)反比例函數(shù)的圖象上,求OB的長;
(3)如圖2,將第(2)題中的四邊形ABCD向右平移,記平移后的四邊形為A1B1C1D1,過點(diǎn)D1的反比例函數(shù)y=(k≠0)的圖象與BA的延長線交于點(diǎn)P.問:在平移過程中,是否存在這樣的k,使得以點(diǎn)P,A1,D為頂點(diǎn)的三角形是直角三角形?若存在,請直接寫出所有符合題意的k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅星中學(xué)九年級(jí)(1)班三位教師決定帶領(lǐng)本班名學(xué)生利用假期去某地旅游,楓江旅行社的收費(fèi)標(biāo)準(zhǔn)為:教師全價(jià),學(xué)生半價(jià);而東方旅行社不管教師還是學(xué)生一律八折優(yōu)惠,這兩家旅行社的全價(jià)都是500元。
(1)用含的式子表示三位教師和位學(xué)生參加這兩家旅行社所需的費(fèi)用各是多少元;
(2)如果=50時(shí),請你計(jì)算選擇哪一家旅行社較為合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com