【題目】如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是( )
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)
科目:初中數學 來源: 題型:
【題目】(1)如圖1,是等邊三角形邊上一動點(點)與點不重合,連接,以為邊在上方作等邊三角形,連接,你能發(fā)現與之間的數量關系嗎?并證明你發(fā)現的結論.
(2)如圖二,當動點在等邊三角形邊上運動時(點與點不重合),連接,以為邊在其上方、下方分別作等邊三角形和等邊三角形,連接,,探究,與有何數量關系?并證明你探究的結論.
(3)如圖三,當動點在等邊三角形邊的延長線上運動時,其他作法與圖2相同,若,請直接寫出 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+3與拋物線 交于A、B兩點,點A在x軸上,點B的橫坐標為 .動點P在拋物線上運動(不與點A、B重合),過點P作y軸的平行線,交直線AB于點Q.當PQ不與y軸重合時,以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側,連結PM.設點P的橫坐標為m.
(1)求b、c的值.
(2)當點N落在直線AB上時,直接寫出m的取值范圍.
(3)當點P在A、B兩點之間的拋物線上運動時,設正方形PQMN的周長為C,求C與m之間的函數關系式,并寫出C隨m增大而增大時m的取值范圍.
(4)當△PQM與坐標軸有2個公共點時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題情境:如圖①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖②,∠MAN=90°,射線AE在這個角的內部,點B、C在∠MAN的邊AM、AN上,且AB=AC, CF⊥AE于點F,BD⊥AE于點D.證明:△ABD≌△CAF;
歸納證明:如圖③,點BC在∠MAN的邊AM、AN上,點EF在∠MAN內部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC, ∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應用:如圖④,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為 .(12分)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點F,D為AB的中點,連接DF延長交AC于點E.若AB=10,BC=16,則線段EF的長為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長均為1個單位的正方形網格圖中,建立了平面直角坐標系xOy,按要求解答下列問題:
(1)寫出△ABC三個頂點的坐標;
(2)畫出△ABC向右平移6個單位后得到的圖形△A1B1C1;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=80°,點P是射線AM上動點(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AM于C、D.
(1)求∠CBD的度數;
(2)當點P運動時,那么∠APB:∠ADB的度數比值是否隨之發(fā)生變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律;
(3)當點P運動到使∠ACB=∠ABD時,求∠ABC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車沿同一平直公路由地勻速行駛(中途不停留),前往終點地,甲、乙兩車之間的距離(千米)與甲車行駛的時間(小時)之間的函數關系如圖所示。下列說法:①甲、乙兩地相距210千米;②甲速度為60千米/小時;③乙速度為120千米/小時;④乙車共行駛小時,其中正確的個數為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com