【題目】如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).

(1)此時小強頭部E點與地面DK相距多少?

(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?

(sin80°≈0.98,cos80°≈0.17, ≈1.41,結(jié)果精確到0.1cm)

【答案】(1)此時小強頭部E點與地面DK相距約為144.5cm(2)他應向前9.5cm

【解析】試題分析:(1)過點FFNDKN,過點EEMFNM,利用三角函數(shù)求出FM,FN的值即可解決問題,(2)過點EEPAB于點P,延長OBMNN,分別求出OH,PH的值即可做出判斷.

(1)如圖,過點F作FN⊥DK于N,過點E作EM⊥FN于M.∵EF+FG=166cm,F(xiàn)G=100cm,∴EF=66cm.∵∠FGK=80°,∴FN=100·sin80°≈98cm.

∵∠EFG=125°,∴∠EFM=180°-125°-10°=45°,∴FM=66·cos45°≈46.53cm,∴MN=FN+FM≈144.5cm.∴此時小強頭部E點與地面DK相距約為144.5cm.

(2)如圖,過點E作EP⊥AB于點P,延長OB交MN于H.∵AB=48cm,O為AB中點,∴AO=BO=24cm.∵EM=66·sin45°≈46.53(cm),∴PH≈46.53(cm).

∵GN=100·cos80°≈17(cm),CG=15cm,∴OH=24+15+17=56(cm),OP=OH-PH=56-46.53=9.47≈9.5cm,∴他應向前9.5cm

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ACB中,∠C=90°,點OAB上,以O為圓心,OA長為半徑的圓與AC,AB分別交于點D,E,且∠CBD=∠A

1)判斷直線BD⊙O的位置關(guān)系,并證明你的結(jié)論;

2)若AD∶AO=8∶5,BC=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】望江中學為了了解學生平均每天“誦讀經(jīng)典”的時間,在全校范圍內(nèi)隨機抽查了部分學生進行調(diào)查統(tǒng)計,并將調(diào)查統(tǒng)計的結(jié)果分為:每天誦讀時間t≤20分鐘的學生記為A類,20分鐘<t≤40分鐘的學生記為B類,40分鐘<t≤60分鐘的學生記為C類,t>60分鐘的學生記為D類四種.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)m=%,n=%,這次共抽查了名學生進行調(diào)查統(tǒng)計;

(2)請補全上面的條形統(tǒng)計圖;

(3)如果該校共有1200名學生,請你估計該校C類學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,假命題的是( 。

A. 四個角都相等的四邊形是矩形

B. 兩組對邊分別相等的四邊形是平行四邊形

C. 對角線互相垂直且相等的四邊形是正方形

D. 兩條對角線互相垂直平分的四邊形是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,點PAC邊上一個動點,過P作直線EFBC,交∠ACB的平分線于點E,交∠ACB的外角∠ACD平分線于點F

1)請說明:PEPF;

2)當點PAC邊上運動到何處時,四邊形AECF是矩形?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只,某學習小組做摸球?qū)嶒,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復上述過程,下表是活動進行中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.64

0.58

0.605

0.601

1)請將表中的數(shù)據(jù)補充完整,

2)請估計:當n很大時,摸到白球的概率約是   .(精確到0.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDC,E,F,GH分別是AD,BC,BD,AC的中點.

1)證明:EGEH;(2)證明:四邊形EHFG是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承中華優(yōu)秀的傳統(tǒng)文化,市教育局決定開展經(jīng)典誦讀進校園活動,某校園團委組織八年級100名學生進行經(jīng)典誦讀選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統(tǒng)計圖表:

請根據(jù)所給信息,解答以下問題:

(1)表中 ;

(2)請計算扇形統(tǒng)計圖中組對應的圓心角的度數(shù);

(3)已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列舉法或樹狀圖法求甲、乙兩名同學都被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標軸上,且點A02),點C1,0),BEx軸于點E,一次函數(shù)y=x+b經(jīng)過點B,交y軸于點D

1)求證:△AOC≌△CEB;

2)求△ABD的面積.

查看答案和解析>>

同步練習冊答案