【題目】如圖,⊙O的直徑為,點(diǎn)在圓周上(異于),是的平分線(xiàn),.
(1)求證:直線(xiàn)是⊙O的切線(xiàn);
(2)若=3,,求的值.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)連接OC,證OC⊥CD即可;利用角平分線(xiàn)的性質(zhì)和等邊對(duì)等角,可證得∠OCA=∠CAD,即可得到OC∥AD,由于AD⊥CD,那么OC⊥CD,由此得證.
(2)根據(jù)直徑所對(duì)的圓周角是直角得出∠ACB=90°,根據(jù)勾股定理求出AC=4,然后證出△ABC∽△ACD,利用相似三角形的對(duì)應(yīng)邊成比例列式解答即可.
試題解析:
(1)證明:連接OC,
∵AC是∠DAB的角平分線(xiàn),
∴∠DAC=∠BAC,
又∵OA=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OCA,
∴OC∥AD,
∵AD⊥CD,
∴OC⊥CD,
∴DC是⊙O的切線(xiàn);
(2)解:∵AB是⊙O直徑,C在⊙O上,
∴∠ACB=90°,
又∵BC=3,AB=5,
∴由勾股定理得AC=4.
∵∠BAC=∠DAC,∠ACB=∠D= 90°,
∴△ABC∽△ACD,
∴,
∴,
解得:AD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長(zhǎng)方形對(duì)角線(xiàn)上任一點(diǎn)作兩條分別平行于兩鄰邊的直線(xiàn),則所容兩長(zhǎng)方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證,根據(jù)圖形可知他得出的這個(gè)推論指( )
A. S矩形ABMN=S矩形MNDCB. S矩形EBMF=S矩形AEFN
C. S矩形AEFN=S矩形MNDCD. S矩形EBMF=S矩形NFGD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),正方形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(2,2),反比例函數(shù)(x>0,k≠0)的圖象經(jīng)過(guò)線(xiàn)段BC的中點(diǎn)D.
(1)求k的值;
(2)若點(diǎn)P(x,y)在該反比例函數(shù)的圖象上運(yùn)動(dòng)(不與點(diǎn)D重合),過(guò)點(diǎn)P作PR⊥y軸于點(diǎn)R,作PQ⊥BC所在直線(xiàn)于點(diǎn)Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, ,高、 相交于點(diǎn), ,且 .
(1)求線(xiàn)段 的長(zhǎng);
(2)動(dòng)點(diǎn) 從點(diǎn) 出發(fā),沿線(xiàn)段 以每秒 1 個(gè)單位長(zhǎng)度的速度向終點(diǎn) 運(yùn)動(dòng),動(dòng)點(diǎn) 從 點(diǎn) 出發(fā)沿射線(xiàn) 以每秒 4 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn) 到達(dá) 點(diǎn)時(shí), 兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn) 的運(yùn)動(dòng)時(shí)間為 秒,的面積為 ,請(qǐng)用含 的式子表示 ,并直接寫(xiě)出相應(yīng)的 的取值范圍;
(3)在(2)的條件下,點(diǎn) 是直線(xiàn)上的一點(diǎn)且 .是否存在 值,使以點(diǎn) 為頂 點(diǎn)的三角形與以點(diǎn) 為頂點(diǎn)的三角形全等?若存在,請(qǐng)直接寫(xiě)出符合條件的 值; 若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有A、B兩種型號(hào)的客車(chē)共20輛,它們的載客量、每天的租金如表所示.已知在20輛客車(chē)都坐滿(mǎn)的情況下,共載客720人.
A型號(hào)客車(chē) | B型號(hào)客車(chē) | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
(1)求A、B兩種型號(hào)的客車(chē)各有多少輛?
(2)某中學(xué)計(jì)劃租用A、B兩種型號(hào)的客車(chē)共8輛,同時(shí)送七年級(jí)師生到沙家浜參加社會(huì)實(shí)踐活動(dòng),已知該中學(xué)租車(chē)的總費(fèi)用不超過(guò)4600元.
①求最多能租用多少輛A型號(hào)客車(chē)?
②若七年級(jí)的師生共有305人,請(qǐng)寫(xiě)出所有可能的租車(chē)方案,并確定最省錢(qián)的租車(chē)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且AB=AE,延長(zhǎng)AB與DE的延長(zhǎng)線(xiàn)交于點(diǎn)F.下列結(jié)論中:①△ABC≌△EAD;②△ABE是等邊三角形;③AD=AF;④S△ABE=S△CEF其中正確的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線(xiàn):y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,直至得到C6,若點(diǎn)P(11,m)在第6段拋物線(xiàn)C6上,則m=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com