8.解下列不等式.
(1)2(1-2x)>4-(x-1);
(2)$\frac{2x-1}{3}$≥1-$\frac{5x-1}{6}$.

分析 (1)去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化成1即可求解;
(2)首先去分母,然后括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化成1即可求解.

解答 解:(1)去括號(hào),得2-4x>4-x+1,
移項(xiàng),得-4x+x>4+1-2,
合并同類項(xiàng),得-3x>3,
系數(shù)化成1得x<-1;
(2)去分母,得2(2x-1)≥6-(5x-1),
去括號(hào),得4x-2≥6-5x+1,
移項(xiàng),得4x+5x≥6+1+2,
合并同類項(xiàng),得9x≥9,
系數(shù)化成1得x≥1.

點(diǎn)評 本題考查了一元一次不等式的解法,解不等式的依據(jù)是不等式的基本性質(zhì),需注意,在不等式兩邊都除以一個(gè)負(fù)數(shù)時(shí),應(yīng)只改變不等號(hào)的方向.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.化簡二次根式:$\sqrt{4\frac{4}{9}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.觀察算式:$\frac{1}{1×2}$=1-$\frac{1}{2}$=$\frac{1}{2}$
                 $\frac{1}{1×2}$+$\frac{1}{2×3}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$=$\frac{2}{3}$
                 $\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=$\frac{3}{4}$
(1)按規(guī)律填空$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$=$\frac{4}{5}$.$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+$\frac{1}{5×6}$=$\frac{5}{6}$
(2)計(jì)算$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$…+$\frac{1}{99×100}$的值,并寫出計(jì)算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.計(jì)算下列各小題
(1)($\frac{3}{2}$-$\frac{1}{3}$+3)÷$\frac{1}{6}$
(2)-22-$\sqrt{4}$+(-1)2013×$\frac{2}{5}$÷$\root{3}{-64}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.把下列各數(shù)在數(shù)軸上表示出來,并用“<”號(hào)把它們連接起來.
-2,|-3|,$\frac{3}{2}$,-$\sqrt{3}$,-(-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)軸上的點(diǎn)A到原點(diǎn)的距離是2,那么在數(shù)軸上到點(diǎn)A的距離是3.5的點(diǎn)所表示的數(shù)是-5.5或1.5或-1.5或5.5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖①,把一張長方形紙板擺放在坐標(biāo)系中,已知AB=8,AC=17.
(1)求點(diǎn)D坐標(biāo).
(2)折三角形紙板ADC,使邊CD落在邊AC上,設(shè)折痕交AD邊于點(diǎn)E(圖②),求點(diǎn)E坐標(biāo).
(3)將三角形紙板ADC沿AC邊翻折,翻折后記為△AMC,設(shè)AM與BC交于點(diǎn)N,請?jiān)趫D③中畫出圖形,并求出點(diǎn)N坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.填空
(1)(-16)+(-8)=-24;
(2)(+15)+(-4)=11;  
(3)(-$\frac{1}{2}$)+(-$\frac{2}{3}$)=-$\frac{7}{6}$;        
(4)(-3.4)+4.3=0.9;
(5)(-3.5)+0=-3.5; 
(6)(-12)+(+12)=0;
(7)(-32)-(+5)=-37;
(8)7.3-(-6.8)=14.1;
(9)(-3.28)-1=-4.28;         
(10)12-21=-9;  
(11)(-5)×(-3)=15;      
(12)(-$\frac{3}{4}$)×$\frac{2}{3}$=-$\frac{1}{2}$;
(13)(-10)×$\frac{1}{3}$×0.1×(-6)=2;
(14)21×(-71)×0×43=0;
(15)(-18)÷6=-3;      
(16)$\frac{6}{25}$÷(-$\frac{4}{5}$)=-$\frac{3}{10}$;
(17)$\frac{-24}{-16}$=$\frac{3}{2}$;
(18)-$\frac{1}{2}$÷$\frac{7}{8}$×(-$\frac{3}{4}$)=$\frac{3}{7}$;         
(19)(-2)5=-32;         
(20)-24=-16.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.在實(shí)數(shù)范圍內(nèi)因式分解:2x2-8xy+5y2=($\sqrt{2}$x-2$\sqrt{2}$y+$\sqrt{3}$y)($\sqrt{2}$x-2$\sqrt{2}$y-$\sqrt{3}$y).

查看答案和解析>>

同步練習(xí)冊答案