【題目】問(wèn)題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線(xiàn)段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線(xiàn),
∵CA=CB,∴CO是∠ACB的角平分線(xiàn).(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:
依據(jù)2:
(2)你有與小宇不同的思考方法嗎?請(qǐng)寫(xiě)出你的證明過(guò)程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線(xiàn)BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線(xiàn)上,FD的延長(zhǎng)線(xiàn)與CA的延長(zhǎng)線(xiàn)垂直相交于點(diǎn)M,BC的延長(zhǎng)線(xiàn)與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線(xiàn)段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫(xiě)出證明過(guò)程.
【答案】(1)等腰三角形三線(xiàn)合一(或等腰三角形頂角的平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高互相重合);角平分線(xiàn)上的點(diǎn)到角的兩邊距離相等;(2)見(jiàn)解析;(3)見(jiàn)解析
【解析】
(1)根據(jù)等腰三角形的性質(zhì)和角平分線(xiàn)性質(zhì)得出即可;
(2)證△OMA≌△ONB(AAS),即可得出答案;
(3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC-∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案.
(1)解:依據(jù)1為:等腰三角形三線(xiàn)合一(或等腰三角形頂角的平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高互相重合),依據(jù)2為:角平分線(xiàn)上的點(diǎn)到角的兩邊距離相等.
(2)證明:∵CA=CB,
∴∠A=∠B,
∵O是AB的中點(diǎn),
∴OA=OB.
∵DF⊥AC,DE⊥BC,
∴∠AMO=∠BNO=90°,
∵在△OMA和△ONB中
,
∴△OMA≌△ONB(AAS),
∴OM=ON.
(3)解:OM=ON,OM⊥ON.理由如下:
如圖2,連接OC,
∵∠ACB=∠DNB,∠B=∠B,
∴△BCA∽△BND,
∴,
∵AC=BC,
∴DN=NB.
∵∠ACB=90°,
∴∠NCM=90°=∠DNC,
∴MC∥DN,
又∵DF⊥AC,
∴∠DMC=90°,
即∠DMC=∠MCN=∠DNC=90°,
∴四邊形DMCN是矩形,
∴DN=MC,
∵∠B=45°,∠DNB=90°,
∴∠3=∠B=45°,
∴DN=NB,
∴MC=NB,
∵∠ACB=90°,O為AB中點(diǎn),AC=BC,
∴∠1=∠2=45°=∠B,OC=OB(斜邊中線(xiàn)等于斜邊一半),
在△MOC和△NOB中
,
∴△MOC≌△NOB(SAS),
∴OM=ON,∠MOC=∠NOB,
∴∠MOC-∠CON=∠NOB-∠CON,
即∠MON=∠BOC=90°,
∴OM⊥ON.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知代數(shù)式(n≠-2).
(1)①用含n的代數(shù)式表示m;
②若m、n均取整數(shù),求m、n的值.
(2)當(dāng)n取a、b時(shí),m對(duì)應(yīng)的值為c、d. 當(dāng)-2<b<a時(shí),試比較c、d的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC= 90°,D是邊AC上的一點(diǎn),AB= AD,連接BD, E是BC上的一點(diǎn),以BE為直徑的⊙0經(jīng)過(guò)點(diǎn)D.
(1)求證: AC是⊙O的切線(xiàn):
(2)若∠A=60°,⊙O的半徑為2,求CE長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個(gè)檔次,第1檔次(最低檔次)的產(chǎn)品一天能生產(chǎn)95件,每件利潤(rùn)6元.每提高一個(gè)檔次,每件利潤(rùn)增加2元,但一天產(chǎn)量減少5件.
(1)若生產(chǎn)第檔次的產(chǎn)品一天的總利潤(rùn)為元(其中為正整數(shù),且1≤≤10),求出關(guān)于的函數(shù)關(guān)系式;
(2)若生產(chǎn)第x檔次的產(chǎn)品一天的總利潤(rùn)為1120元,求該產(chǎn)品的質(zhì)量檔次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線(xiàn)y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對(duì)稱(chēng)軸與直線(xiàn)AB交于點(diǎn)E,拋物線(xiàn)頂點(diǎn)為D.
(1)求拋物線(xiàn)的解析式;
(2)在第三象限內(nèi),F為拋物線(xiàn)上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對(duì)稱(chēng)軸向下以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫(xiě)出所有符合條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線(xiàn)(x>0)上有一點(diǎn)A(1,5),過(guò)點(diǎn)A的直線(xiàn)y=mx+n與x軸交于點(diǎn)C(6,0).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OA、OB,求△AOB的面積;
(3)根據(jù)圖象直接寫(xiě)出在第一象限內(nèi)反比例函數(shù)值大于一次函數(shù)值時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)將長(zhǎng)方形紙片ABCD的一邊CD沿著CQ向下折疊,使點(diǎn)D落在邊AB上的點(diǎn)P處.
(1)試判斷線(xiàn)段CQ與PD的關(guān)系,并說(shuō)明理由;
(2)如圖(2),若AB=CD=5,AD=BC=3.求AQ的長(zhǎng);
(3)如圖(2),BC=3,取CQ的中點(diǎn)M,連接MD,PM,若MD⊥PM,求AQ(AB+BC)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AD、AE分別平分∠BAC和△BAC的外角∠BAF,且分別交圓于點(diǎn)D、F,連接DE,CD,DE與BC相交于點(diǎn)G.
(1)求證:DE是△ABC的外接圓的直徑;
(2)設(shè)OG=3,CD=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人走進(jìn)一家商店,進(jìn)門(mén)付l角錢(qián),然后在店里購(gòu)物花掉當(dāng)時(shí)他手中錢(qián)的一半,走出商店付1角錢(qián);之后,他走進(jìn)第二家商店付1角錢(qián),在店里花掉當(dāng)時(shí)他手中錢(qián)的一半, 走出商店付1角錢(qián);他又進(jìn)第三家商店付l角錢(qián),在店里花掉當(dāng)時(shí)他手中錢(qián)的一半,出店付1角錢(qián);最后他走進(jìn)第四家商店付l角錢(qián),在店里花掉當(dāng)時(shí)他手中錢(qián)的一半, 出店付1角錢(qián),這時(shí)他一分錢(qián)也沒(méi)有了.該人原有錢(qián)的數(shù)目是________角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com