【題目】如圖,矩形ABCD中,AB=4,AD=2,EAB的中點,FEC上一動點,PDF中點,連接PB,則PB的最小值是_____.

【答案】

【解析】

根據(jù)中位線定理可得出點P的運動軌跡是線段P1P2,再根據(jù)垂線段最短可得當BPP1P2時,PB取得最小值;由矩形的性質以及已知的數(shù)據(jù)即可知BP1P1P2,故BP的最小值為BP1的長,由勾股定理求解即可.

如圖:


當點F與點C重合時,點PP1處,CP1=DP1

當點F與點E重合時,點PP2處,EP2=DP2,

P1P2CEP1P2=CE

當點FEC上除點C、E的位置處時,有DP=FP,由中位線定理可知:P1PCEP1P=CF,

∴點P的運動軌跡是線段P1P2,

∴當BPP1P2時,PB取得最小值,

∵矩形ABCD中,AB=4,AD=2,EAB的中點,

∴△CBEADE、BCP1為等腰直角三角形,CP1=2

∴∠ADE=CDE=CP1B=45°,∠DEC=90°

∴∠DP2P1=90°,

∴∠DP1P2=45°

∴∠P2P1B=90°,即BP1P1P2

BP的最小值為BP1的長,

在等腰直角△BCP1中,CP1=BC=2

BP1=2,

PB的最小值是2.

故答案為:2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.

(1)求這個二次函數(shù)的解析式;

(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使AOB的面積等于6,求點B的坐標;

(3)對于(2)中的點B,在此拋物線上是否存在點P,使POB=90°?若存在,求出點P的坐標,并求出POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=x經過點A,作ABx軸于點B,將ABO繞點B逆時針旋轉60°得到CBD,若點B的坐標為(2,0),則點C的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形中,,,,,將繞點處開始按順時針方向旋轉,交邊(或)于點,交邊(或)于點,當旋轉至處時,停止旋轉.

1)特殊情形:如圖2,發(fā)現(xiàn)當過點時,PN也恰巧過點,此時 (填“≌”或“∽”);

2)類比探究:如圖3,在旋轉過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AGBC,點EA出發(fā)沿射線AG1cm/s的速度與運動,同時點F從點B出發(fā)沿射線BC2cm/s的速度運動,設運動時間為t(s).

(1)連接EF,當EF經過AC邊的中點D是,求證ADE≌△CDF

(2)填空題:①當t________s時,四邊形ACFE是菱形;

②當t________s時,以A,C,F,E為頂點的四邊形為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩個全等的等腰直角三角形擺成如圖所示的樣子(圖中的所有點,線都在同一平面內),請在圖中找出一組相似的三角形,并說明它們相似的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,的位置如圖所示:(每個小方格都是邊長為1個單位長度的正方形)

1)畫出關于點的中心對稱圖形;

2)將繞著點逆時針旋轉,畫出旋轉后得到的

3)請利用格點圖,僅用無刻度的直尺畫出邊上的高(保留作圖痕跡);

4P軸上一點,且PBC是以BC為直角邊的直角三角形.請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某專賣店準備購進甲、乙兩種運動鞋,其進價和售價如下表所示。已知用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.

運動鞋價格

進價元/)

m

m-30

售價(/)

300

200

(1)m的值;

(2)要使購進的甲,乙兩種運動鞋共200雙的總利潤不少于21700元且不超過22300元,問該專賣店有幾種進貨方案?

(3)(2)的條件下,專賣店決定對甲種運動鞋每雙優(yōu)惠a(60<a<80)元出售,乙種運動鞋價格不變,那么該專賣店要獲得最大利潤應如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+3x軸于點A(﹣10)和點B3,0),與y軸交于點C

1)求拋物線的解析式;

2)連接BC,若點P為線段BC上的一個動點(不與點B、點C重合),過點P作直線PNx軸于點N,交拋物線于點M,當△BCM面積最大時,求△BPN的周長.

3)在(2)的條件下,當△BCM面積最大時,在拋物線的對稱軸上是否存在點Q,使△CNQ為等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案