【題目】如圖,12×12的正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,正方形的頂點(diǎn)叫做格點(diǎn).矩形ABCD的四個(gè)頂點(diǎn)A,BC,D都在格點(diǎn)上,將ADC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)得到ADC,點(diǎn)C與點(diǎn)C為對(duì)應(yīng)點(diǎn)

1)在正方形網(wǎng)格中確定D的位置,并畫(huà)出ADC;

2若邊AB交邊CD于點(diǎn)E,求AE的長(zhǎng).

【答案】(1)作圖見(jiàn)解析;(2).

【解析】試題分析: 畫(huà)圖即可.

根據(jù)旋轉(zhuǎn)的性質(zhì),可得ADCADC,設(shè)中,運(yùn)用勾股定理求解即可.

試題解析:

2∵將ADC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)得到ADC,點(diǎn)C與點(diǎn)C為對(duì)應(yīng)點(diǎn)

ADCADC,

AC=AC,ADAD=5,CDCD=10,ADCADC90°,ACDACD,

ABCD

∴∠BACACD,ABC C,AC=AC,

∴∠BACCAB,

∴∠ACDCAB,

CEAE

中,

設(shè)

,

解得:

答:AE的長(zhǎng)為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=ACD是邊BC上的一點(diǎn),DEABDFAC,垂足分別是E、F,EFBC

1)求證:BDE≌△CDF;

2)若BC=2AD,求證:四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線AB與坐標(biāo)軸交于A,B兩點(diǎn),線段OA,OC的長(zhǎng)是方程x2﹣3x+2=0的兩個(gè)根(OA>OC).

(1)求點(diǎn)A,C的坐標(biāo);

(2)直線AB與直線CD交于點(diǎn)E,若點(diǎn)E是線段AB的中點(diǎn),反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支經(jīng)過(guò)點(diǎn)E,求k的值;

(3)在(2)的條件下,點(diǎn)M在直線CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結(jié)論:SABESBCEAFG=∠AGF;FAG2ACF;BHCH.其中所有正確結(jié)論的序號(hào)是

A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB,AD、CE相交于點(diǎn)P

(1) 求∠CPD的度數(shù)

(2) 若AE=3,CD=7,求線段AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】程大位是我國(guó)明朝商人,珠算發(fā)明家,他60歲時(shí)完成的《直指算法綜宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法,書(shū)中有如下問(wèn)題:一百饅頭一百僧,大僧三個(gè)更無(wú)爭(zhēng),小僧三人分一個(gè),大小和尚得幾丁,意思是:有100個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完,大、小和尚各有多少人,則小和尚有__________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“五·一車展期間,某汽車經(jīng)銷商推出四種型號(hào)的轎車共1000輛進(jìn)行展銷,型號(hào)轎車銷售的成交率(售出數(shù)量展銷數(shù)量)為50%,圖1是各型號(hào)參展轎車的百分比,圖2是已售出的各型號(hào)轎車的數(shù)量,(兩幅統(tǒng)計(jì)圖尚不完整)

1)參加展銷的型號(hào)轎車有多少輛?

2)請(qǐng)你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,現(xiàn)同時(shí)將點(diǎn),分別向上平移個(gè)單位,再向右平移個(gè)單位,分別得到點(diǎn),的對(duì)應(yīng)點(diǎn),連接,.(三角形可用符號(hào)表示,面積用符號(hào)表示)

1)直接寫(xiě)出點(diǎn),的坐標(biāo).

2)在軸上是否存在點(diǎn),連接,,使,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)點(diǎn)在直線上運(yùn)動(dòng),連接.

①若在線段之間時(shí)(不與,重合),求的取值范圍;

②若在直線上運(yùn)動(dòng),請(qǐng)直接寫(xiě)出,的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座拱橋的截面輪廓為拋物線型(如圖1),拱高6,跨度20,相鄰兩支柱間的距離均為5.

1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是的形式. 請(qǐng)根據(jù)所給的數(shù)據(jù)求出的值.

2)求支柱MN的長(zhǎng)度.

3)拱橋下地平面是雙向行車道(正中間DE是一條寬2米的隔離帶),其中的一條行車道能否并排行駛寬2米、高3米的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說(shuō)說(shuō)你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案