【題目】如圖1,⊙O的半徑為r(r>0),若點P′在射線OP上,滿足OP′OP=r2 , 則稱點P′是點P關于⊙O的“反演點”. 如圖2,⊙O的半徑為4,點B在⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點A,B關于⊙O的反演點,求A′B′的長.

【答案】解:設OA交⊙O于C,連結B′C,如圖2,
∵OA′OA=42
而r=4,OA=8,
∴OA′=2,
∵OB′OB=42 ,
∴OB′=4,即點B和B′重合,
∵∠BOA=60°,OB=OC,
∴△OBC為等邊三角形,
而點A′為OC的中點,
∴B′A′⊥OC,
在Rt△OA′B′中,sin∠A′OB′= ,
∴A′B′=4sin60°=2
【解析】設OA交⊙O于C,連結B′C,如圖2,根據(jù)新定義計算出OA′=2,OB′=4,則點A′為OC的中點,點B和B′重合,再證明△OBC為等邊三角形,則B′A′⊥OC,然后在Rt△OA′B′中,利用正弦的定義可求A′B′的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,飛機在一定高度上沿水平直線飛行,先在點A處測得正前方小島C的俯角為30°,面向小島方向繼續(xù)飛行10km到達B處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為45°,如果小島高度忽略不計,求飛機飛行的高度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都經(jīng)過原點,頂點分別為A,B,與x軸的另一交點分別為M,N,如果點A與點B,點M與點N都關于原點O成中心對稱,則稱拋物線C1和C2為姐妹拋物線,請你寫出一對姐妹拋物線C1和C2 , 使四邊形ANBM恰好是矩形,你所寫的一對拋物線解析式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某地2月18日到23日PM2.5濃度和空氣質量指數(shù)AQI的統(tǒng)計圖(當AQI不大于100時稱空氣質量為“優(yōu)良”).由圖可得下列說法:①18日的PM2.5濃度最低;②這六天中PM2.5濃度的中位數(shù)是112μg/m3;③這六天中有4天空氣質量為“優(yōu)良”;④空氣質量指數(shù)AQI與PM2.5濃度有關.其中正確的是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點O重合.在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經(jīng)過動點A的反比例函數(shù)y= (k≠0)中k的值的變化情況是(
A.一直增大
B.一直減小
C.先增大后減小
D.先減小后增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校七,八年級學生的睡眠情況,隨機抽取了該校七,八年級部分學生進行調(diào)查,已知抽取七年級與八年級的學生人數(shù)相同,利用抽樣所得的數(shù)據(jù)繪制如下統(tǒng)計圖表.

睡眠情況分組表(單位:時)

組別

睡眠時間x

A

x≤7.5

B

7.5≤x≤8.5

C

8.5≤x≤9.5

D

9.5≤x≤10.5

E

x≥10.5

根據(jù)圖表提供的信息,回答下列問題:
(1)求統(tǒng)計圖中的a;
(2)抽取的樣本中,八年級學生睡眠時間在C組的有多少人?
(3)已知該校七年級學生有755人,八年級學生有785人,如果睡眠時間x(時)滿足:7.5≤x≤9.5,稱睡眠時間合格,試估計該校七、八年級學生中睡眠時間合格的共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分線,將△ABC沿直線CD翻折,點A落在點E處,那么AE的長是

查看答案和解析>>

同步練習冊答案