精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADC,BD=DC

C.B=CBAD=CAD D. B=C,BD=DC

【答案】D

【解析】

兩個三角形有公共邊AD,可利用SSS,SASASA,AAS的方法判斷全等三角形。
解答:

AD=AD,
A、當BD=DC,AB=AC時,利用SSS證明△ABD≌△ACD,正確;
B、當ADB=ADC,BD=DC時,利用SAS證明△ABD≌△ACD,正確;
C、當B=C,BAD=CAD時,利用AAS證明△ABD≌△ACD,正確;
D、當B=C,BD=DC時,符合SSA的位置關系,不能證明△ABD≌△ACD,錯誤
故選D。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點,且AD∥CO.
(1)求證:△ADB∽△OBC;
(2)連結CD,試說明CD是⊙O的切線;
(3)若AB=2, ,求AD的長.(結果保留根號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上一點,弦AD平分∠BAC,交BC于點E,若AB=6,AD=5,則DE的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知A、O、B三點在同一直線上,射線OD、OE分別平分∠AOC、BOC

(1)求∠DOE的度數;

(2)如圖2,在∠AOD內引一條射線OF,使∠COF=,其他不變,設∠DOF=

①求∠AOF的度數(用含的代數式表示).

②若∠BOD是∠AOF2倍,求∠DOF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在直角坐標平面內,已點A3,0)、B(-5,3),將點A向左平移6個單位到達C,將點B向下平移6個單位到達D

1)寫出C點、D點的坐標C __________D ____________ ;

2)把這些點按ABCDA順次連接起來,這個圖形的面積是__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,ACB90°,點D,E分別在ABAC上,CEBC,連接CD,將線段CD繞點C按順時針方向旋轉90°后得CF,連接EF.

(1)補充完成圖形;

(2)EFCD,求證:BDC90°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數;

(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側,且AP=AQ,點Q關于直線AC的對稱點為M,連接AM,PM.

①依題意將圖2補全;

②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點B順時針旋轉60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了了解學生大課間活動的跳繩情況,隨機抽取了50名學生每分鐘跳繩的次數進行統(tǒng)計,把統(tǒng)計結果繪制成如表和直方圖.

次數

70≤x<90

90≤x<110

110≤x<130

130≤x<150

150≤x<170

人數

8

23

16

2

1

根據所給信息,回答下列問題:

(1)本次調查的樣本容量是
(2)本次調查中每分鐘跳繩次數達到110次以上(含110次)的共有的共有人;
(3)根據上表的數據補全直方圖;
(4)如果跳繩次數達到130次以上的3人中有2名女生和一名男生,學校從這3人中抽取2名學生進行經驗交流,求恰好抽中一男一女的概率(要求用列表法或樹狀圖寫出分析過程).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數y= 的圖象上.作射線AB,再將射線AB繞點A按逆時針方向旋轉45°,交反比例函數圖象于點C,則點C的坐標為.

查看答案和解析>>

同步練習冊答案