【題目】問題探究:在邊長(zhǎng)為的正方形中,對(duì)角線、交于點(diǎn)

探究:如圖,若點(diǎn)是對(duì)角線上任意一點(diǎn),則線段的長(zhǎng)的取值范圍是__________;

探究:如圖,若點(diǎn)內(nèi)任意一點(diǎn),點(diǎn)分別是邊和對(duì)角線上的兩個(gè)動(dòng)點(diǎn),則當(dāng) 的值在探究中的取值范圍內(nèi)變化時(shí), 的周長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出周長(zhǎng)的最小值,若不存在,請(qǐng)說明理由;

問題解決:如圖,在邊長(zhǎng)為的正方形中,點(diǎn)內(nèi)任意一點(diǎn),且,點(diǎn)分別是邊和對(duì)角線上的兩個(gè)動(dòng)點(diǎn),則當(dāng)的周長(zhǎng)取到最小值時(shí),求四邊形面積的最大值.

【答案】;()存在,2;3.

【解析】試題分析(1)當(dāng)PO重合時(shí),PA的值最小,最小值為 ;當(dāng)PBD重合時(shí),PA的值最大,最大值為4,即可得線段的長(zhǎng)的取值范圍;(2)存在.如圖2,作點(diǎn)P關(guān)于AB、AC的對(duì)稱點(diǎn)EF,連接EFABM,ACN,連接AE、AFPA.PM+MN+PN=EM+NM+NF=EF ,推出點(diǎn)P位置確定時(shí)此時(shí)PMN的周長(zhǎng)最小,最小值為線段EF的長(zhǎng)PAM=EAM,PAN=FAN,BAC=45°,推出EAF=2BAC=90°,PA=PE=PF,推出EAF 是等腰直角三角形,PA的最小值為可得線段EF的最小值為2,由此即可解決問題(3)如圖3,在圖2的基礎(chǔ)上,A為圓心AB為半徑作A ,PAEF于點(diǎn)O.MAP≌△MAE, NAP≌△NAF推出由此可以知道AMN 的面積最小時(shí),四邊形AMPN的面積最大.

試題解析:

(1)圖1中,

∵四邊形ABCD是正方形,邊長(zhǎng)為4,

ACBD,AC=BD=4

當(dāng)PO重合時(shí),PA的值最小最小值為2,

當(dāng)PBD重合時(shí),PA的值最大,最大值為4,

;

(2)存在.

理由如圖2,作點(diǎn)P關(guān)于ABAC的對(duì)稱點(diǎn)E、F,連接EFABMACN,連接AE、AF、PA.

∵PM+MN+PN=EM+NM+NF=EF,

點(diǎn)P位置確定時(shí),此時(shí)的周長(zhǎng)最小最小值為線段EF的長(zhǎng),

∵∠PAM=∠EAM,∠PAN=∠FAN,∠BAC=45°,

∴∠EAF=2∠BAC=90°

∵PA=PE=PF,

∴△EAF是等腰直角三角形,

PA的最小值為,

線段EF的最小值為2,

∴△PMN的周長(zhǎng)的最小值為2.

(3)如圖3,在圖2的基礎(chǔ)上A為圓心AB為半徑作⊙A,PAEF于點(diǎn)O.

根據(jù)題意點(diǎn)P在上⊙A,

∵△MAP≌△MAE, △NAP≌△NAF,

∵PA=AE=AF=4,

=8.

∴△AMN的面積最小時(shí)四邊形AMPN的面積最大,

易知當(dāng)PAMN時(shí), AMN 的面積最小此時(shí)OA=,OM=ON=OP=4-,

MN=8-4 ,

,

四邊形AMPN的面積的最大值=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形, , ,過點(diǎn)垂直直線于點(diǎn) ,再過點(diǎn)垂直于直線于點(diǎn),則__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正方形ABCD(如圖1)作如下劃分:第1次劃分:分別連接正方形ABCD對(duì)邊的中點(diǎn)(如圖2),得線段HFEG,它們交于點(diǎn)M,此時(shí)圖2中共有5個(gè)正方形;第2次劃分:將圖2左上角正方形AEMH按上述方法再作劃分,得圖3,則圖3中共有_________個(gè)正方形;若每次都把左上角的正方形依次劃分下去,則第100次劃分后,圖中共有_______個(gè)正方形;繼續(xù)劃分下去,能否將正方形ABCD劃分成有2011個(gè)正方形的圖形?需說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備開展陽光體育活動(dòng),決定開設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問題.

1)這次活動(dòng)一共調(diào)查了________名學(xué)生;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于________度;

4)若該學(xué)校有1000人,請(qǐng)你估計(jì)該學(xué)校選擇乒乓球項(xiàng)目的學(xué)生人數(shù)約是________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O在直線AB上,OCOD,∠EDO與∠1互余.

1)求證:ED//AB;

2OF平分∠CODDE于點(diǎn)F,若∠OFD=65°,補(bǔ)全圖形,并求∠1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.

(1)直接寫出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;

(2)連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)PFDE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;

①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?

②設(shè)△BCF的面積為S,求Sm的函數(shù)關(guān)系式,S是否有最大值?如有,請(qǐng)求出最大值,沒有請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖(1),如果ABCDEF. 那么∠BAC+ACE+CEF=360°.

老師要求學(xué)生在完成這道教材上的題目后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?

1)小華首先完成了對(duì)這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小華用到的平行線性質(zhì)可能是______________.

2)接下來,小華用《幾何畫板》對(duì)圖形進(jìn)行了變式,她先畫了兩條平行線AB,EF,然后在平行線間畫了一點(diǎn)C,連接ACEC后,用鼠標(biāo)拖動(dòng)點(diǎn)C,分別得到了圖(2)(3)(4),小華發(fā)現(xiàn)圖(3)正是上面題目的原型,于是她由上題的結(jié)論猜想到圖(2)和(4)中的∠BAC,∠ACE與∠CEF之間也可能存在著某種數(shù)量關(guān)系.然后,她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.

請(qǐng)你在小華操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:

①猜想:圖(2)中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: .

②補(bǔ)全圖(4),并直接寫出圖中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: . 3)小華繼續(xù)探究:如圖(5),若直線AB與直線EF不平行,點(diǎn)GH分別在直線AB、直線EF上,點(diǎn)C在兩直線外,連接CG,CH,GH,且GH同時(shí)平分∠BGC和∠FHC,請(qǐng)?zhí)剿鳌?/span>AGC,∠GCH與∠CHE之間的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)我們知道“三角形三個(gè)內(nèi)角的和為 180°”現(xiàn)在我們用平行線的性質(zhì)來證明這個(gè)結(jié)論是正確的

已知:∠BAC、∠B、∠C 是△ABC 的三個(gè)內(nèi)角,如圖 1

求證:BAC+B+C=180° 證明:過點(diǎn) A 作直線 DEBC(請(qǐng)你把證明過程補(bǔ)充完整)

2)請(qǐng)你用(1)中的結(jié)論解答下面問題:

如圖 2,已知四邊形 ABCD,求∠A+B+C+D 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷發(fā)現(xiàn):銷售單價(jià)x(/)與每天銷售量y()之間滿足如圖所示的關(guān)系:

(1)求出yx之間的函數(shù)關(guān)系式;

(2)寫出每天的利潤(rùn)W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案