【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】試題解析:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,
,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,
∴∠CBF=90°,S△FAB=FBFG=S四邊形CBFG,②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴ADFE=AD2=FQAC,④正確;
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點A、點B的坐標分別為(4,0)、(0,3).
(1)求AB的長度.
(2)如圖2,若以AB為邊在第一象限內(nèi)作正方形ABCD,求點C的坐標.
(3)在x軸上是否存一點P,使得⊿ABP是等腰三角形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題8分)如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,BD=AE,AD與CE交于點F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中, 是邊上的中線, 是的中點,過點作的平行線交的延長線于點,連結和.
(1)求證:四邊形是平行四邊形;
(2)若,試判斷四邊形的形狀,并證明你的結論;
(3)是什么三角形時,四邊形是正方形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明發(fā)現(xiàn)關于x的方程★x﹣6=4中的x的系數(shù)被污染了,要解方程怎么辦?他翻開資料的答案一看,此方程的解為x=﹣2,則★=?( )
A.★=﹣5
B.★=3
C.★=4
D.★=﹣3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com