【題目】如圖,已知點(diǎn)A(11)關(guān)于直線y =kx的對(duì)稱點(diǎn)恰好落在x軸的正半軸上,則k的值是(

A.B.C.D.

【答案】B

【解析】

作輔助線,構(gòu)建點(diǎn)與x軸和y軸的垂線,先根據(jù)點(diǎn)A的坐標(biāo)得出OA′的長,再根據(jù)中位線定理和推論得:CFAA′E的中位線,所以CF=AE=,也可以求OF的長,表示出點(diǎn)C的坐標(biāo),代入直線y=kx中求出k的值.

解:設(shè)A關(guān)于直線y=kx的對(duì)稱點(diǎn)為A′,連接AA′,交直線y=kxC,分別過A、Cx軸的垂線,垂足分別為E、F,則AECF,

A11),

AE=OE=1,

OA=

AA′關(guān)于直線y=kx對(duì)稱,

OCAA′的中垂線,

OA′=OA=

AECF,AC=A′C

EF=A′F=,

CF=AE=

OF=OA′-A′F=,

C),

C)代入y=kx中得:

,

,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青海新聞網(wǎng)訊:2016221日,西寧市首條綠道免費(fèi)公共自行車租賃系統(tǒng)正式啟用.市政府今年投資了112萬元,建成40個(gè)公共自行車站點(diǎn)、配置720輛公共自行車.今后將逐年增加投資,用于建設(shè)新站點(diǎn)、配置公共自行車.預(yù)計(jì)2018年將投資340.5萬元,新建120個(gè)公共自行車站點(diǎn)、配置2205輛公共自行車.

1)請(qǐng)問每個(gè)站點(diǎn)的造價(jià)和公共自行車的單價(jià)分別是多少萬元?

2)請(qǐng)你求出2016年到2018年市政府配置公共自行車數(shù)量的年平均增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E是對(duì)角線AC上一動(dòng)點(diǎn),連接BE,作CFBE分別交BE于點(diǎn)GAB于點(diǎn)F

1)如圖1,若CF恰好平分∠BCA,求證:△CGE≌△CGB;

2)如圖2,若,取BC的中點(diǎn)H,連接AHBE于點(diǎn)P,求證:

AH3AP;

BH2BFBA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為 6 的等邊△ABC 中,D AC 上一點(diǎn),AD=2,P BD 上一點(diǎn),連接 CP,以 CP 邊,在 PC 的右側(cè)作等邊△CPQ,連接 AQ BD 延長線于 E,當(dāng)△CPQ 面積最小時(shí),QE=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù) (a 0) x 軸交于 A、C 兩點(diǎn),與 y 軸交于點(diǎn) B,P 拋物線的頂點(diǎn),連接 AB,已知 OAOC=1:3.

1)求 A、C 兩點(diǎn)坐標(biāo);

2)過點(diǎn) B BD∥x 軸交拋物線于 D,過點(diǎn) P PE∥AB x 軸于 E,連接 DE,

E 坐標(biāo);

tan∠BPM=,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,已知∠C=90°,∠B=60°,點(diǎn)D在邊BC上,過DDEABE

1)連接AD,取AD的中點(diǎn)F,連接CF,EF,判斷CEF的形狀,并說明理由

2)若BD=CD.把BED繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m0m180)度后,如果點(diǎn)B恰好落在初始RtABC的邊上,那么m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)O為∠BAC的平分線上一點(diǎn),連接OB、OC

1)求證:OBOC

2)若OAOC,∠BAC46°,求∠OCB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是我校聞瀾閣前樓梯原設(shè)計(jì)稿的側(cè)面圖,,樓梯的坡比為1,為了增加樓梯的舒適度,將其改造成如圖2,測(cè)量得,的中點(diǎn),過點(diǎn)分別作的角平分線于點(diǎn),于點(diǎn),其中為樓梯,為平地,則平地的長度為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是邊長為4的正方形,ECD上一點(diǎn),且DE1F為射線BC上一動(dòng)點(diǎn),過點(diǎn)EEGAF于點(diǎn)P,交直線AB于點(diǎn)G.則下列結(jié)論中:①AFEG;②若∠BAF=∠PCF,則PCPE;③當(dāng)∠CPF45°時(shí),BF1;④PC的最小值為2.其中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案