【題目】如圖,已知四邊形ABCD是邊長(zhǎng)為4的正方形,ECD上一點(diǎn),且DE1F為射線(xiàn)BC上一動(dòng)點(diǎn),過(guò)點(diǎn)EEGAF于點(diǎn)P,交直線(xiàn)AB于點(diǎn)G.則下列結(jié)論中:①AFEG;②若∠BAF=∠PCF,則PCPE;③當(dāng)∠CPF45°時(shí),BF1;④PC的最小值為2.其中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

連接AE,過(guò)EEHABH,則EHBC,根據(jù)全等三角形的判定和性質(zhì)定理即可得到AFEG,故①正確;根據(jù)平行線(xiàn)的性質(zhì)和等腰三角形的性質(zhì)即可得到PEPC;故②正確;連接EF,推出點(diǎn)E,PF,C四點(diǎn)共圓,根據(jù)圓周角定理得到∠FEC=∠FPC45°,于是得到BFDE1,故③正確;取AE 的中點(diǎn)O,連接PO,CO,根據(jù)直角三角形的性質(zhì)得到AOPOAE,推出點(diǎn)P在以O為圓心,AE為直徑的圓上,當(dāng)O、C、P共線(xiàn)時(shí),CP的值最小,根據(jù)三角形的三邊關(guān)系得到PC≥OCOP,根據(jù)勾股定理即可得到結(jié)論.

連接AE,過(guò)EEHABH

EHBC,

ABBC

EHAB,

EGAF,

∴∠BAF+AGP=∠BAF+AFB90°

∴∠EGH=∠AFB,

∵∠B=∠EHG90°

∴△HEG≌△ABFAAS),

AFEG,故①正確;

ABCD,

∴∠AGE=∠CEG,

∵∠BAF+AGP90°,∠PCF+PCE90°

∵∠BAF=∠PCF,

∴∠AGE=∠PCE,

∴∠PEC=∠PCE,

PEPC;故②正確;

連接EF,

∵∠EPF=∠FCE90°,

∴點(diǎn)E,P,FC四點(diǎn)共圓,

∴∠FEC=∠FPC45°

ECFC,

BFDE1,

故③正確;

AE 的中點(diǎn)O,連接PO,CO

AOPOAE,

∵∠APE90°,

∴點(diǎn)P在以O為圓心,AE為直徑的圓上,

∴當(dāng)OC、P共線(xiàn)時(shí),CP的值最小,

PC≥OCOP

PC的最小值=OCOPOCAE,

OC,AE

PC的最小值為,故④錯(cuò)誤,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(1,1)關(guān)于直線(xiàn)y =kx的對(duì)稱(chēng)點(diǎn)恰好落在x軸的正半軸上,則k的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,C=90°,點(diǎn)DAB的中點(diǎn),ACBC

(1)試用無(wú)刻度的直尺和圓規(guī),在BC上作一點(diǎn)E,使得直線(xiàn)ED平分ABC的周長(zhǎng);(不要求寫(xiě)作法,但要保留作圖痕跡)

(2)(1)的條件下,若DERtABC面積為12兩部分,請(qǐng)?zhí)骄?/span>ACBC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)閱讀理解

如圖,點(diǎn)在反比例函數(shù)的圖象上,連接,取線(xiàn)段的中點(diǎn).分別過(guò)點(diǎn),,軸的垂線(xiàn),垂足為,,交反比例函數(shù)的圖象于點(diǎn).點(diǎn),,的橫坐標(biāo)分別為,.小紅通過(guò)觀(guān)察反比例函數(shù)的圖象,并運(yùn)用幾何知識(shí)得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個(gè)關(guān)于,之間數(shù)量關(guān)系的命題:若,則______

(2)證明命題

小東認(rèn)為:可以通過(guò),則的思路證明上述命題.

小晴認(rèn)為:可以通過(guò),,且,則的思路證明上述命題.

請(qǐng)你選擇一種方法證明(1)中的命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平面直角坐標(biāo)系,兩點(diǎn)的坐標(biāo)分別為

1)若軸上的一個(gè)動(dòng)點(diǎn),則當(dāng)_______時(shí),的周長(zhǎng)最短;

2)若軸上的兩個(gè)動(dòng)點(diǎn),則當(dāng)_______時(shí),四邊形的周長(zhǎng)最短;

3)設(shè)分別為軸和軸上的動(dòng)點(diǎn),請(qǐng)問(wèn):是否存在這樣的點(diǎn) 使四邊形的周長(zhǎng)最短?若存在,請(qǐng)求出,_________,________(不必寫(xiě)解答過(guò)程);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是⊙O的弦,點(diǎn)C是弧AB的中點(diǎn),D是弦AB上一動(dòng)點(diǎn),且不與AB重合,CD的延長(zhǎng)線(xiàn)交于⊙O點(diǎn)E,連接AEBE,過(guò)點(diǎn)AAFBC,垂足為F,∠ABC30°

1)求證:AF是⊙O的切線(xiàn);

2)若BC6,CD3,則DE的長(zhǎng)為   ;

3)當(dāng)點(diǎn)D在弦AB上運(yùn)動(dòng)時(shí),的值是否發(fā)生變化?如果變化,請(qǐng)寫(xiě)出其變化范圍;如果不變,請(qǐng)求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了提高學(xué)生的綜合素質(zhì),成立了以下社團(tuán):.機(jī)器人,.圍棋,.羽毛球,.電影配音.每人只能加入一個(gè)社團(tuán).為了解學(xué)生參加社團(tuán)的情況,從加社團(tuán)的學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,其中圖所占扇形的圓心角為

根據(jù)以上信息,解答下列問(wèn)題:

這次被調(diào)查的學(xué)生共有   人;

請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

若該校共有學(xué)生加入了社團(tuán),請(qǐng)你估計(jì)這名學(xué)生中有多少人參加了羽毛球社團(tuán);

在機(jī)器人社團(tuán)活動(dòng)中,由于甲、乙、丙、丁四人平時(shí)的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加機(jī)器人大賽.用樹(shù)狀圖或列表法求恰好選中甲、乙兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座隧道的截面由拋物線(xiàn)和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)為8m,寬為2m,隧道最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系:

1)求拋物線(xiàn)的解析式;

2)一輛貨車(chē)高4m,寬2m,能否從該隧道內(nèi)通過(guò),為什么?

3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車(chē)是否可以順利通過(guò),為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】忽如一夜春風(fēng)來(lái),千樹(shù)萬(wàn)樹(shù)梨花開(kāi).在清明假期期間,小梅和小北姐弟二人準(zhǔn)備一起去樂(lè)陵大孫鄉(xiāng)采摘園賞梨花,但因家中臨時(shí)有事,必須留下一人在家,于是姐弟二人采用游戲的方式來(lái)確定誰(shuí)去賞梨花.游戲規(guī)則是:在不透明的口袋中分別放入2個(gè)白色和1個(gè)黃色的乒乓球,它們除顏色外其余都相同.游戲時(shí)先由小梅從口袋中任意摸出1個(gè)乒乓球記下顏色后放回并搖勻,再由小北從口袋中摸出1個(gè)乒乓球,記下顏色.如果姐弟二人摸到的乒乓球顏色相同,則小梅贏(yíng),否則小北贏(yíng).則小北贏(yíng)的概率是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案