(1997•臺(tái)灣)已知:如圖,AB=AC,AQ為任一弦與BC相交于P點(diǎn).求證:AB為AP與AQ之比例中項(xiàng).
分析:由AB=AC,可證得∠Q=∠ABP,又由公共角相等,可證得△ABQ∽△APB,然后由相似三角形的對(duì)應(yīng)邊成比例,證得AB為AP與AQ之比例中項(xiàng).
解答:證明:∵AB=AC,
AB
=
AC
,
∴∠Q=∠ABP,
∵∠BAQ=∠PAB(公共角),
∴△ABQ∽△APB,
∴AB:AP=AQ:AB,
∴AB2=AP•AQ.
即AB為AP與AQ之比例中項(xiàng).
點(diǎn)評(píng):此題考查了圓周角定理以及相似三角形的判定與性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1997•臺(tái)灣)已知:如圖,△ABC中,AB=AC,BE⊥AC,CF⊥AB.
求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•臺(tái)灣)已知:如圖,圓O′為△ABC之內(nèi)切圓,圓O′為△ABC之外接圓.
求證:AD=CD=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•臺(tái)灣)已知:如圖,扇形AOB.求作:一個(gè)與OA、OB、
AB
皆相切的圓.

查看答案和解析>>

同步練習(xí)冊(cè)答案