13.計(jì)算:
(1)(-1)3-$\frac{1}{4}$×[2-(-3)2].  
(2)-32×(-2)-[-(-2)÷(-1)]3

分析 (1)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘法運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果;
(2)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘法運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果.

解答 解:(1)原式=-1-$\frac{1}{4}$×(2-9)=-1+$\frac{7}{4}$=$\frac{3}{4}$;
(2)原式=-9×(-2)-(-2)3=18-(-8)=26.

點(diǎn)評(píng) 此題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知y-4與x成正比例,且 x=6 時(shí),y=-4.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P在y軸上,(1)中的函數(shù)圖象與x軸、y軸分別交于A、B兩點(diǎn),以A、B、P為頂點(diǎn)的等腰三角形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.計(jì)算:
(1)($\frac{1}{2}$)-1-2+(π-3.14)0     
(2)$\frac{{x}^{2}-1}{{x}^{2}+2x+1}$÷$\frac{{x}^{2}-x}{x+1}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列對(duì)函數(shù)的認(rèn)識(shí)正確的是(  )
A.若y是x的函數(shù),那么x也是y的函數(shù)
B.兩個(gè)變量之間的函數(shù)關(guān)系一定能用數(shù)學(xué)式子表達(dá)
C.若y是x的函數(shù),則當(dāng)y取一個(gè)值時(shí),一定有唯一的x值與它對(duì)應(yīng)
D.一個(gè)人的身高也可以看作他年齡的函數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知反比例函數(shù)y=$\frac{k}{x}$的圖象與直線y=x+1都過(guò)點(diǎn)(-3,n)
(1)求n,k的值;
(2)若拋物線y=x2-2mx+m2-m-1的頂點(diǎn)在反比例函數(shù)y=$\frac{k}{x}$的圖象上,求這條拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.解不等式組:$\left\{\begin{array}{l}x-1≥0\\ 4-2x>0\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

5.分式方程$\frac{2}{x+1}$=$\frac{1}{x-1}$的解為x=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.請(qǐng)把以下證明過(guò)程補(bǔ)充完整,并在下面的括號(hào)內(nèi)填上推理理由:
已知:如圖,∠1=∠2,∠A=∠D.
求證:∠B=∠C
證明:∵∠1=∠2,(已知)
又:∵∠1=∠3,對(duì)頂角相等
∴∠2=∠3,(等量代換)
∴AE∥FD同位角相等,兩直線平行
∴∠A=∠BFD兩直線平行,同位角相等
∵∠A=∠D(已知)
∴∠D=∠BFD(等量代換)
∴AB∥CD內(nèi)錯(cuò)角相等,兩直線平行
∴∠B=∠C兩直線平行,內(nèi)錯(cuò)角相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知:y=$\sqrt{x-2017}$-$\sqrt{2017-x}$-2016,求x+y的平方根.

查看答案和解析>>

同步練習(xí)冊(cè)答案