【題目】如圖,在□ABCD中,ECD上一點(diǎn),連接AE,BD,且AE,BD交于點(diǎn)F,若EFAF=2:5,求SDEFS四邊形EFBC

【答案】4:31

【解析】

由平行四邊形的性質(zhì)可證明△DEF∽△BAF,可求得△DEF和△AFE、△ABF的面積之間的關(guān)系,從而可求得△DEF和△BCD的面積之間的關(guān)系,可求得答案.

解:∵四邊形ABCD為平行四邊形,
∴CD∥AB,
∴△DEF∽△BAF,

,

== , = ,

設(shè)SDEF=S,則SABF=S,SADF=S,
∴SABD=SADF+SABF=S+S=S,
∵四邊形ABCD為平行四邊形,
∴SABD=SDBC=S,
∴S四邊形EFBC=SBDC-SDEF=S-S=S,
∴SDEF:S四邊形EFBC=4:31.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°后,得到線段AB,則點(diǎn)B的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),B(4,0),與y軸交于點(diǎn)C(0,4).

(1)求此拋物線的解析式;

(2)設(shè)點(diǎn)P(2,n)在此拋物線上,APy軸于點(diǎn)E,連接BE,BP,請(qǐng)判斷BEP的形狀,并說明理由;

(3)設(shè)拋物線的對(duì)稱軸交x軸于點(diǎn)D,在線段BC上是否存在點(diǎn)Q,使得DBQ成為等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的邊BC為直徑的⊙OAC于點(diǎn)D,過點(diǎn)D⊙O的切線交AB于點(diǎn)E.

(1)如圖1,若∠ABC=90°,求證:OE∥AC;

(2)如圖2,已知AB=AC,若sin∠ADE=, tanA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,Rt△ACB中,AC=3,BC=4,有一動(dòng)圓⊙O始終與Rt△ACB的斜邊AB相切于動(dòng)點(diǎn)P,且⊙O始終經(jīng)過直角頂點(diǎn)C

(1)如圖2,當(dāng)⊙O 運(yùn)動(dòng)至與直角邊AC相切時(shí),求此時(shí)⊙O 的半徑r的長(zhǎng);

(2)試求⊙O 的半徑r的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=2,點(diǎn)M在BC上,連接AM,作AMN=AMB,點(diǎn)N在直線AD上,MN交CD于點(diǎn)E

(1)求證:AMN是等腰三角形;

(2)求BMAN的最大值;

(3)當(dāng)M為BC中點(diǎn)時(shí),求ME的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在一次社會(huì)實(shí)踐活動(dòng)中,組織學(xué)生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會(huì)實(shí)踐活動(dòng)的效果,學(xué)校隨機(jī)抽取了部分學(xué)生,對(duì)“最喜歡的景點(diǎn)”進(jìn)行了問卷調(diào)查,并根據(jù)統(tǒng)計(jì)結(jié)果繪制了如下不完整的統(tǒng)計(jì)圖.其中最喜歡烈士陵園的學(xué)生人數(shù)與最喜歡博物館的學(xué)生人數(shù)之比為2:1,請(qǐng)結(jié)合統(tǒng)計(jì)圖解答下列問題:

(1)本次活動(dòng)抽查了   名學(xué)生;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,最喜歡植物園的學(xué)生人數(shù)所對(duì)應(yīng)扇形的圓心角是   度;

(4)該校此次參加社會(huì)實(shí)踐活動(dòng)的學(xué)生有720人,請(qǐng)求出最喜歡烈士陵園的人數(shù)約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點(diǎn).

(1)求該拋物線的解析式;

(2)若拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得QAC的周長(zhǎng)最。咳舸嬖,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)在拋物線的第二象限圖象上是否存在一點(diǎn)P,使得PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及PBC的面積最大值;若不存,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案