【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點(diǎn).

(1)求該拋物線的解析式;

(2)若拋物線交y軸于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)在拋物線的第二象限圖象上是否存在一點(diǎn)P,使得PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及PBC的面積最大值;若不存,請(qǐng)說(shuō)明理由.

【答案】(1):y=﹣x2﹣2x+8;(2)點(diǎn)Q(﹣1,6)即為所求;(3)點(diǎn)P的坐標(biāo)為(﹣2,8).

【解析】

試題分析:(1)直接利用待定系數(shù)求出二次函數(shù)解析式即可;

(2)首先求出直線BC的解析式,再利用軸對(duì)稱求最短路線的方法得出答案;

(3)根據(jù)SBPC=S四邊形BPCO﹣SBOC=S四邊形BPCO﹣16,得出函數(shù)最值,進(jìn)而求出P點(diǎn)坐標(biāo)即可.

解:(1)將A(2,0),B(﹣4,0)代入得:

,

解得:,

則該拋物線的解析式為:y=﹣x2﹣2x+8;

(2)如圖1,點(diǎn)A關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)B,設(shè)直線BC的解析式為:y=kx+d,

將點(diǎn)B(﹣4,0)、C(0,8)代入得:

解得:,

故直線BC解析式為:y=2x+8,

直線BC與拋物線對(duì)稱軸 x=﹣1的交點(diǎn)為Q,此時(shí)QAC的周長(zhǎng)最。

解方程組得,

則點(diǎn)Q(﹣1,6)即為所求;

(3)如圖2,過(guò)點(diǎn)P作PEx軸于點(diǎn)E,

P點(diǎn)(x,﹣x2﹣2x+8)(﹣4<x<0)

SBPC=S四邊形BPCO﹣SBOC=S四邊形BPCO﹣16

若S四邊形BPCO有最大值,則SBPC就最大

S四邊形BPCO=SBPE+S直角梯形PEOC

=BEPE+OE(PE+OC)

=(x+4)(﹣x2﹣2x+8)+(﹣x)(﹣x2﹣2x+8+8)

=﹣2(x+2)2+24,

當(dāng)x=﹣2時(shí),S四邊形BPCO最大值=24,

SBPC最大=24﹣16=8,

當(dāng)x=﹣2時(shí),﹣x2﹣2x+8=8,

點(diǎn)P的坐標(biāo)為(﹣2,8).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC,ABC=90°,利用直尺和圓規(guī),根據(jù)要求作圖(不寫(xiě)作法,保留作圖痕跡),并解決下面的問(wèn)題.

1)作AC的垂直平分線,分別交AC、BC于點(diǎn)DE;

2)若AB=12BE=5,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰RtABC中,ACB=90°,AC=CB,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且始終保持AD=CE.連接DE、DF、EF.

(1)求證:ADF≌△CEF;

(2)試證明DFE是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某報(bào)亭老板以每份0.5元的價(jià)格從報(bào)社購(gòu)進(jìn)某種報(bào)紙500份,以每份0.8元的價(jià)格銷售x份﹙x<500﹚,未銷售完的報(bào)紙又以每份0.1元的價(jià)格由報(bào)社收回。這次買(mǎi)賣中該老板賺錢(qián)____元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BDABC平分線,DEABE,AB=36cm,BC=24cm,SABC=144cm2,則DE的長(zhǎng)是(

A4.8cm B4.5cm C4cm D2.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).

1)把△ABC向上平移5個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫(huà)出△A1B1C1,并寫(xiě)出C1的坐標(biāo);

2)以原點(diǎn)O為對(duì)稱中心,再畫(huà)出與△A1B1C1關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2,并寫(xiě)出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】136﹣76+﹣23﹣105

2

3

4

5

6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù):3,5, 2,5,3,7,5,則這組數(shù)據(jù)的中位數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一組數(shù)據(jù):2,x,1,3,6,若這組數(shù)據(jù)平均數(shù)是3,則中位數(shù)是__,眾數(shù)是__

查看答案和解析>>

同步練習(xí)冊(cè)答案