【題目】在數(shù)學(xué)興趣小組活動中,小明進(jìn)行數(shù)學(xué)探究活動,將邊長為2的正方形ABCD與邊長為的正方形AEFG按圖1位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
(1)小明發(fā)現(xiàn)DG⊥BE,請你幫他說明理由;
(2)如圖2,小明將正方形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時,請你幫他求出此時BE的長;
(3)如圖3,小明將正方形ABCD繞點(diǎn)A繼續(xù)逆時針旋轉(zhuǎn),線段DG與線段BE將相交,交點(diǎn)為H,寫出△GHE與△BHD面積之和的最大值,并簡要說明理由.
【答案】(1)理由見試題解析;(2);(3)6.
【解析】
試題分析:(1)由四邊形ABCD與四邊形AEFG為正方形,利用正方形的性質(zhì)得到兩對邊相等,且夾角相等,利用SAS得到三角形ADG與三角形ABE全等,利用全等三角形對應(yīng)角相等得∠AGD=∠AEB,如圖1所示,延長EB交DG于點(diǎn)H,利用等角的余角相等得到∠DHE=90°,利用垂直的定義即可得DG⊥BE;
(2)由四邊形ABCD與四邊形AEFG為正方形,利用正方形的性質(zhì)得到兩對邊相等,且夾角相等,利用SAS得到三角形ADG與三角形ABE全等,利用全等三角形對應(yīng)邊相等得到DG=BE,如圖2,過點(diǎn)A作AM⊥DG交DG于點(diǎn)M,∠AMD=∠AMG=90°,在直角三角形AMD中,求出AM的長,即為DM的長,根據(jù)勾股定理求出GM的長,進(jìn)而確定出DG的長,即為BE的長;
(3)△GHE和△BHD面積之和的最大值為6,理由為:對于△EGH,點(diǎn)H在以EG為直徑的圓上,即當(dāng)點(diǎn)H與點(diǎn)A重合時,△EGH的高最大;對于△BDH,點(diǎn)H在以BD為直徑的圓上,即當(dāng)點(diǎn)H與點(diǎn)A重合時,△BDH的高最大,即可確定出面積的最大值.
試題解析:(1)∵四邊形ABCD和四邊形AEFG都為正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,在△ADG和△ABE中,∵AD=AB, ∠DAG=∠BAE=90°,AG=AE,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如圖1所示,延長EB交DG于點(diǎn)H,在△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,在△EDH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,則DG⊥BE;
(2)∵四邊形ABCD和四邊形AEFG都為正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,∵AD=AB, ∠DAG=∠BAE, AG=AE,∴△ADG≌△ABE(SAS),∴DG=BE,如圖2,過點(diǎn)A作AM⊥DG交DG于點(diǎn)M,∠AMD=∠AMG=90°,∵BD為正方形ABCD的對角線,∴∠MDA=45°,在Rt△AMD中,∠MDA=45°,∴cos45°=,∵AD=2,∴DM=AM=,在Rt△AMG中,根據(jù)勾股定理得:GM==,∵DG=DM+GM=,∴BE=DG=;
(3)△GHE和△BHD面積之和的最大值為6,理由為:
對于△EGH,點(diǎn)H在以EG為直徑的圓上,∴當(dāng)點(diǎn)H與點(diǎn)A重合時,△EGH的高最大;
對于△BDH,點(diǎn)H在以BD為直徑的圓上,∴當(dāng)點(diǎn)H與點(diǎn)A重合時,△BDH的高最大,則△GHE和△BHD面積之和的最大值為2+4=6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次信息技術(shù)考試中,某興趣小組9名同學(xué)的成績(單位:分)分別是:7,10,9,8,10,7,9,9,8,則這組數(shù)據(jù)的中位數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各數(shù): ,3.1415, ,0, , ,1.3030030003……(每兩個3之間多一個0)中,
(1)無理數(shù)為:;
(2)整數(shù)為:;
(3)按從小到大排列,并用“<”連接.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直角三角形ABC中,∠B=90°,AB=8,BC=6,BM為中線,△BMN為等腰三角形(點(diǎn)N在三角形AB或AC邊上,且不與頂點(diǎn)重合),求S△BMN .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)系式中,正確的是( )
A.(a+b)2=a2﹣2ab+b2
B.(a﹣b)2=a2﹣b2
C.(a+b)2=a2+b2
D.(a+b)(a﹣b)=a2﹣b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
小明同學(xué)遇到下列問題:
解方程組 ,他發(fā)現(xiàn)如果直接用代入消元法或加減消元法求解,運(yùn)算量比較大,也容易出錯.如果把方程組中的(2x+3y)看作一個數(shù),把(2x﹣3y)看作一個數(shù),通過換元,可以解決問題.以下是他的解題過程:
令m=2x+3y,n=2x﹣3y.
這時原方程組化為 解得
把 代入m=2x+3y,n=2x﹣3y.
得 解得
所以,原方程組的解為
請你參考小明同學(xué)的做法,解決下面的問題:
(1)解方程組
(2)若方程組 的解是 ,求方程組 的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要調(diào)查某班學(xué)生對“社會主義核心價(jià)值觀”內(nèi)容的熟記情況,宜選擇____________.(填“全面調(diào)查”或“抽樣調(diào)查”)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com