【題目】如圖,學校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為 60°,然后在坡頂D測得樹頂B的仰角為300,已知斜坡CD的長度為20m,DE的長為10m,則樹AB的高度是( ) m
A. B. 30 C. D. 40
【答案】B
【解析】
先根據(jù)CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數(shù)的定義即可得出結(jié)論.
在Rt△CDE中,
∵CD=20m,DE=10m,
∴sin∠DCE=,
∴∠DCE=30°.
∵∠ACB=60°,DF∥AE,
∴∠BGF=60°
∴∠ABC=30°,∠DCB=90°.
∵∠BDF=30°,
∴∠DBF=60°,
∴∠DBC=30°,
∴BC=m,
∴AB=BCsin60°=20×=30m.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人分別從丙、丁兩地同時出發(fā),勻速相向而行.甲的速度大于乙的速度,甲到達丁地后,乙繼續(xù)前行.設出發(fā)后,兩人相距,圖中折線表示從兩人出發(fā)至乙到達丙地的過程中與之間的函數(shù)關(guān)系.根據(jù)圖中信息,求:
(1)點的坐標,并說明它的實際意義;
(2)甲、乙兩人的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)企業(yè)生產(chǎn)部有技術(shù)工人15人,生產(chǎn)部為了合理制定產(chǎn)品的每月生產(chǎn)定額,統(tǒng)計了這15人某月的加工零件數(shù)如下:
每人加工零件數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)寫出這15人該月加工零件的平均數(shù)、中位數(shù)和眾數(shù);
(2)生產(chǎn)部負責人要定出合理的每人每月生產(chǎn)定額,你認為應該定為多少件合適?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點P是對角線AC上的一點,PE⊥AB,PF⊥AD,垂足分別為E、F,且PE=PF,平行四邊形ABCD是菱形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測得鐵塔的高度,小瑩利用自制的測角儀,在C點測得塔頂E的仰角為45°,在D點測得塔頂E的仰角為60°,已知測角儀AC的高為1.6米,CD的長為6米,CD所在的水平線CG⊥EF于點G,鐵塔EF的高為________米.(結(jié)果用帶根號的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點,過O點作EF∥BC交AB、AC于E、F.
(1)圖①中有幾個等腰三角形?猜想:EF與BE、CF之間有怎樣的關(guān)系.
(2)如圖②,若AB≠AC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問中EF與BE、CF間的關(guān)系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過O點作OE∥BC交AB于E,交AC于F.這時圖中還有等腰三角形嗎?EF與BE、CF關(guān)系又如何?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校有一批復印任務,原來由甲復印社承接,按每100頁40元計費.現(xiàn)乙復印社表示:若學校先按月付給一定數(shù)額的承包費,則可按每100頁15元收費.兩復印社每月收費情況如圖所示.根據(jù)圖象回答:
(1)設兩家復印社每月復印任務為張,分別求出甲復印社的每月復印收費y甲(元)與乙復印社的每月復印收費y乙(元)與復印任務(張)之見的函數(shù)關(guān)系式.
(2)乙復印社的每月承包費是多少?
(3)當每月復印多少頁時,兩復印社實際收費相同?
(4)如果每月復印頁數(shù)是1200頁,那么應選擇哪個復印社.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com