【題目】已知是反比例函數(shù)圖象上的兩個點.

(1)求m和k的值
(2)若點C(-1,0),連結AC,BC,求△ABC的面積
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

【答案】(1)∵是反比例函數(shù)圖象上的兩個點,
,解得.
.
(2)由(1)得,A的坐標是(-1,-2),B的坐標是(2,1),
設直線AB的解析式是y=ax+b,則
,解得:.
∴直線AB的解析式是y=x-1.
當y=0時,x=1,即OD=1.
∵C(-1,0),∴CD=2.
∴△ABC的面積是×2×1+×2×2=3.

(3)一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍是-1<x<0或x>2.
【解析】
(1)把A、B的坐標代入反比例函數(shù)解析式得出方程組,求出即可;
(2)求出A、B坐標,求出直線AB,求出直線AB和x軸交點坐標,根據(jù)三角形面積公式求出即可;
(3)根據(jù)A、B坐標結合圖象求出即可.
【考點精析】本題主要考查了確定一次函數(shù)的表達式和反比例函數(shù)的圖象的相關知識點,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題:
(1) +( 1﹣2cos60°;
(2)(2x﹣y)2﹣(x+y)(x﹣y).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點P(3a,a)是反比例函數(shù)y=(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為( 。

A.y=
B.y=
C.y=
D.y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B在數(shù)軸上分別表示實數(shù)a、b,A、B兩點之間的距離表示為AB=|ab|,回答下列問題:

(1)數(shù)軸上表示1和﹣3的兩點之間的距離是   

(2)數(shù)軸上表示x和﹣1的兩點分別是點AB,如果AB=2,那么x   ;

(3)互不相等的有理數(shù)ab,c在數(shù)軸上的對應點分別為A,BC,如果|ca|+|bc|=|ab|,那么,在點A,BC中居中的點是   

(4)當|x+2|+|x﹣1|取最小值時,相應的x的取值范圍是   

若|xa|+|xb|的最小值為4,若a=3,則b的值為   

式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣617|的最小值是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,滿足y的值隨x的值增大而增大的是(  )
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)衛(wèi)生防疫部門要求,游泳池必須定期換水,清洗.某游泳池周五早上8:00打開排水孔開始排水,排水孔的排水速度保持不變,期間因清洗游泳池需要暫停排水,游泳池的水在11:30全部排完.游泳池內(nèi)的水量Q(m2)和開始排水后的時間t(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:

(1)暫停排水需要多少時間?排水孔排水速度是多少?
(2)當2≤t≤3.5時,求Q關于t的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為坐標原點,點B的坐標為(4,3),點A、C在坐標軸上,點P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.

(1)分別求直線l1與x軸,直線l2與AB的交點坐標;
(2)已知點M在第一象限,且是直線l2上的點,若△APM是等腰直角三角形,求點M的坐標;
(3)我們把直線l1和直線l2上的點所組成的圖形為圖形F.已知矩形ANPQ的頂點N在圖形F上,Q是坐標平面內(nèi)的點,且N點的橫坐標為x,請直接寫出x的取值范圍(不用說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知 ,數(shù)列 的前n項和為Sn , 數(shù)列{bn}的通項公式為bn=n﹣8,則bnSn的最小值為

查看答案和解析>>

同步練習冊答案