【題目】如圖所示,點P(3a,a)是反比例函數(shù)y=(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為(  )

A.y=
B.y=
C.y=
D.y=

【答案】D
【解析】根據(jù)P(3a,a)和勾股定理,求出圓的半徑,進(jìn)而表示出圓的面積,再根據(jù)圓的面積等于陰影部分面積的四倍,求出圓的面積,建立等式即可求出a的值,從而得出反比例函數(shù)的解析式.
由于函數(shù)圖象關(guān)于原點對稱,所以陰影部分面積為圓面積,
則圓的面積為10π×4=40π.
因為P(3a,a)在第一象限,則a>0,3a>0,
根據(jù)勾股定理,OP=
于是π=40π,a=±2,(負(fù)值舍去),故a=2.
P點坐標(biāo)為(6,2).
將P(6,2)代入y=,
得:k=6×2=12.
反比例函數(shù)解析式為:y=
故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解學(xué)生參加體育活動的情況,對學(xué)生“平均每天參加體育活動的時間”進(jìn)行了隨機(jī)抽樣調(diào)查,下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)“平均每天參加體育活動的時間”“為0.5~1小時”部分的扇形統(tǒng)計圖的圓心角為度;
(2)本次一共調(diào)查了名學(xué)生;
(3)將條形統(tǒng)計圖補(bǔ)充完整;
(4)若該校有2000名學(xué)生,你估計全?赡苡卸嗌倜麑W(xué)生平均每天參加體育活動的時間在0.5小時以下.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,則(m﹣1)2+(n﹣1)2的最小值是( 。
A.6
B.3
C.﹣3
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把一條拋物線先向上平移3個單位長度,然后繞原點選擇180°得到拋物線y=x2+5x+6,則原拋物線的解析式是(  )
A.y=﹣(x﹣ 2
B.y=﹣(x+ 2
C.y=﹣(x﹣ 2
D.y=﹣(x+ 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,﹣3),動點P在拋物線上.

(1)b= , c= , 點B的坐標(biāo)為;(直接填寫結(jié)果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于( 。

A.60
B.80
C.30
D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是反比例函數(shù)圖象上的兩個點.

(1)求m和k的值
(2)若點C(-1,0),連結(jié)AC,BC,求△ABC的面積
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,點B的坐標(biāo)為(3,4),D是OA的中點,點E在AB上,當(dāng)△CDE的周長最小時,點E的坐標(biāo)為(  )

A.(3,1)
B.(3,
C.(3,
D.(3,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a2=
(1)若數(shù)列{an}滿足2an﹣an+1=0,求an;
(2)若a4= ,且數(shù)列{(2n﹣1)an+1}是等差數(shù)列,求數(shù)列{ }的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案