【題目】如圖,在四邊形ABCD中,AB∥CD,∠A=90°,AB=5,CD=2.以A為圓心,AD為半徑的圓與BC邊相切于點(diǎn)M,與AB交于點(diǎn)E,將扇形A﹣DME剪下圍成一個圓錐,則圓錐的高為(
A.1
B.4
C.
D.

【答案】C
【解析】解:如圖,作CF⊥AB于F,連接AM.
∵AD∥CF,CD∥AF,
∴四邊形ADCF是平行四邊形,
∴∠A=90°,
∴四邊形ADCF是矩形,
∴AD=CF=AM,CD=AF=2,
∵AB=5,∴BF=3,
在△AMB和△CFB中,
,
∴△AMB≌△CFB,
∴BM=BF=3,
在Rt△AMB中,AM= = =4,
設(shè)圓錐的高為h,底面半徑為r,
由題意2πr= 2π4,
∴r=1,
∴h= =
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識,掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑,以及對圓錐的相關(guān)計算的理解,了解圓錐側(cè)面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側(cè)面積S=πrl;V圓錐=1/3πR2h.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個全等的三角尺重疊放在△ACB的位置,將其中一個三角尺繞著點(diǎn)C按逆時針方向旋轉(zhuǎn)至△DCE的位置,使點(diǎn)A恰好落在邊DE上,AB與CE相交于點(diǎn)F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,則CF=cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為測量某特種車輛的性能,研究制定了行駛指數(shù)P,P=K+1000,而K的大小與平均速度v(km/h)和行駛路程s(km)有關(guān)(不考慮其他因素),K由兩部分的和組成,一部分與v2成正比,另一部分與sv成正比.在實(shí)驗(yàn)中得到了表格中的數(shù)據(jù):

速度v

40

60

路程s

40

70

指數(shù)P

1000

1600


(1)用含v和s的式子表示P;
(2)當(dāng)行駛指數(shù)為500,而行駛路程為40時,求平均速度的值;
(3)當(dāng)行駛路程為180時,若行駛指數(shù)值最大,求平均速度的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為4個等邊三角形,D為AB邊的中點(diǎn),以CD為直徑畫圓,則圖中陰影部分的面積為(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長線交于點(diǎn)D,DE⊥AD且與AC的延長線交于點(diǎn)E.
(1)求證:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線y=x﹣2經(jīng)過A、C兩點(diǎn),且AB=2.

(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點(diǎn)開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時動點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個單位速度運(yùn)動,(如圖2);當(dāng)點(diǎn)P運(yùn)動到原點(diǎn)O時,直線DE與點(diǎn)P都停止運(yùn)動,連DP,若點(diǎn)P運(yùn)動時間為t秒;設(shè)s= ,當(dāng)t為何值時,s有最小值,并求出最小值.

(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算: ﹣|2 ﹣9tan30°|+( 1﹣(1﹣π)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.

(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,AB=AC=3 ,在△ABC內(nèi)作第一個內(nèi)接正方形DEFG;然后取GF的中點(diǎn)P,連接PD、PE,在△PDE內(nèi)作第二個內(nèi)接正方形HIKJ;再取線段KJ的中點(diǎn)Q,在△QHI內(nèi)作第三個內(nèi)接正方形…依次進(jìn)行下去,則第2014個內(nèi)接正方形的邊長為

查看答案和解析>>

同步練習(xí)冊答案