分析 (1)利用待定系數(shù)法分別求出AB和CD的函數(shù)表達式,進而得出答案;
(2)利用(1)中所求,得出第五分鐘和第三十分鐘的注意力指數(shù),最后比較判斷;
(3)分別求出注意力指數(shù)為36時的兩個時間,再將兩時間之差和19比較,大于19則能講完,否則不能.
解答 解:(1)設線段AB所在的直線的解析式為y1=k1x+20,
把B(10,40)代入得,k1=2,
∴AB解析式為:y1=2x+20(0≤x≤10).
設C、D所在雙曲線的解析式為y2=$\frac{{k}_{2}}{x}$,
把C(25,40)代入得,k2=1000,
∴曲線CD的解析式為:y2=$\frac{1000}{x}$(x≥25);
(2)當x1=5時,y1=2×5+20=30,
當x2=30時,y2=$\frac{1000}{30}$,
∴y1<y2
∴第30分鐘注意力更集中.
(3)令y1=36,
∴36=2x+20,
∴x1=8
令y2=36,
∴36=$\frac{1000}{x}$,
∴x2=$\frac{1000}{36}$≈27.8,
∵27.8-8=19.8>19,
∴經(jīng)過適當安排,老師能在學生注意力達到所需的狀態(tài)下講解完這道題目.
點評 此題主要考查了反比例函數(shù)的應用.解題的關鍵是根據(jù)實際意義列出函數(shù)關系式,從實際意義中找到對應的變量的值,利用待定系數(shù)法求出函數(shù)解析式,再根據(jù)自變量的值求算對應的函數(shù)值.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com