【題目】(1)有理數(shù)在數(shù)軸上的位置如圖所示,且,化簡:.
(2).已知在數(shù)軸上的位置如圖所示,化簡:.
【答案】(1)b﹣a;(2)﹣a+c-b+1.
【解析】
(1)由數(shù)軸可知:b>c>0,a<0,a+b=0,再根據(jù)有理數(shù)的運(yùn)算法則,求出絕對值里的代數(shù)式的正負(fù)性,最后根據(jù)絕對值的性質(zhì)化簡.
(2)先根據(jù)數(shù)軸上各點(diǎn)的位置確定2a、a+c、1﹣b的符號,再根據(jù)絕對值的性質(zhì)去掉絕對值符號,合并同類項(xiàng)即可.
(1)由數(shù)軸,得b>c>0,a<0,又|a|=|b|,∴c﹣a>0,c﹣b<0,a+b=0.
|c﹣a|+|c﹣b|+|a+b|=c﹣a+b﹣c=b﹣a.
(2)∵a、c在原點(diǎn)的左側(cè),∴a<0,c<0,∴2a<0,a+c<0.
∵0<b<1,∴1﹣b>0,∴原式=﹣2a+(a+c)+1﹣b=﹣2a+a+c+1﹣b=﹣a+c-b+1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對邊分別記為,,,由下列條件不能判定△ABC為直角三角形的是( ).
A.∠A+∠B=∠C
B.∠A∶∠B∶∠C =1∶2∶3
C.
D.∶∶=3∶4∶6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=﹣x2+bx+c與x軸、y軸分別相交于點(diǎn)A(﹣1,0)、B(0,3)兩點(diǎn),其頂點(diǎn)為D.
(1)求這條拋物線的解析式;
(2)若拋物線與x軸的另一個交點(diǎn)為E. 求△ODE的面積;拋物線的對稱軸上是否存在點(diǎn)P使得△PAB的周長最短.若存在請求出P點(diǎn)的坐標(biāo),若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( 。
A. 36=15+21 B. 25=9+16 C. 13=3+10 D. 49=18+31
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村計劃對總長為1800m的道路進(jìn)行改造,安排甲、乙兩個工程隊(duì)完成.已知甲隊(duì)每天能完成的道路長度是乙隊(duì)每天能完成的2倍,并且在獨(dú)立完成長為400m的道路時,甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成道路的長度分別是多少m?
(2)若村委每天需付給甲隊(duì)的道路改造費(fèi)用為0.4萬元,乙隊(duì)為0.25萬元,要使這次的道路改造費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:問題:如圖1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,點(diǎn)A,B,E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC,探究PG與PC的位置關(guān)系。
(1)請你寫出上面問題中線段PG與PC的位置關(guān)系,并說明理由;
(2)將圖1中的菱形BEFG繞點(diǎn)B順時針旋轉(zhuǎn),使菱形BEFG的對角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明,
(3)將菱形ABCD和菱形BEFG均改成正方形,如圖3,P為DF的中點(diǎn),此時PG與PC的位置關(guān)系和數(shù)量關(guān)系分別是什么?直接寫出答案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為4個等邊三角形,D為AB邊的中點(diǎn),以CD為直徑畫圓,則圖中陰影部分的面積為(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),拋物線y=ax2+bx+c與x軸交于A(x1,0)、B(x2,0)兩點(diǎn)(x1<0<x2),與y軸交于點(diǎn)C(0,-3),若拋物線的對稱軸為直線x=1,且tan∠OAC=3.
(1)求拋物線的函數(shù)解析式;
(2)若點(diǎn)D是拋物線BC段上的動點(diǎn),且點(diǎn)D到直線BC距離為 ,求點(diǎn)D的坐標(biāo)
(3)如圖(2),若直線y=mx+n經(jīng)過點(diǎn)A,交y軸于點(diǎn)E(0, - ),點(diǎn)P是直線AE下方拋物線上一點(diǎn),過點(diǎn)P作x軸的垂線交直線AE于點(diǎn)M,點(diǎn)N在線段AM延長線上,且PM=PN,是否存在點(diǎn)P,使△PMN的周長有最大值?若存在,求出點(diǎn)P的坐標(biāo)及△PMN的周長的最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com