分析:(1)先利用單項(xiàng)式乘多項(xiàng)式的運(yùn)算法則計(jì)算,并合并同類項(xiàng)得到最簡(jiǎn)式為-x3+y3,再把x,y的值代入最簡(jiǎn)式求值;
(2)根據(jù)多項(xiàng)式除單項(xiàng)式,平方差公式計(jì)算,合并同類項(xiàng)得到最簡(jiǎn)式為-2ab,再把a(bǔ),b的值代入最簡(jiǎn)式求值.
解答:解:(1)(-x)(x
2-2xy-y
2)-y(xy+2x
2-y
2),
=-x
3+2x
2y+xy
2-xy
2-2x
2y+y
3,
=-x
3+y
3,
當(dāng)x=2,y=
時(shí),原式=-x
3+y=-2
3+(
)
3=-
;
(2)(a
2b-2ab
2-b
3)÷b-(a+b)(a-b),
=a
2-2ab-b
2-(a
2-b
2),
=a
2-2ab-b
2-a
2+b
2,
=-2ab.
當(dāng)a=
,b=-1時(shí),原式=-2×
×(-1)=1.
點(diǎn)評(píng):本題考查單項(xiàng)式乘多項(xiàng)式,多項(xiàng)式除單項(xiàng)式,平方差公式,熟練掌握運(yùn)算法則是解題的關(guān)鍵,計(jì)算時(shí)要注意符號(hào)的處理.