【題目】已知:如圖,⊙O是△ABC的內(nèi)切圓,下列說法錯誤的是( 。
A.點O在△ABC的三邊垂直平分線上
B.點O在△ABC的三個內(nèi)角平分線上
C.如果△ABC的面積為S,三邊長為a,b,c,⊙O的半徑為r,那么r=
D.如果△ABC的三邊長分別為5,7,8,那么以A、B、C為端點三條切線長分別為5,3,2

【答案】A
【解析】解:∵⊙O是△ABC的內(nèi)切圓,
∴點O到△ABC三邊的距離相等,
∴點O在△ABC的三個內(nèi)角平分線上,故A錯誤,B正確,
連接OA,OB,OC,
∴S=S△ABO+S△BCO+S△ACO=cr+arbr=(a+b+c)r,
∴r= , 故C正確,
設(shè)以A、B、C為端點三條切線長分別為:x,y,z,
,
解得:
故D正確,
故選A.

【考點精析】認真審題,首先需要了解三角形的內(nèi)切圓與內(nèi)心(三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,它叫做三角形的內(nèi)心).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個零件的主視圖、左視圖、俯視圖如下圖所示(尺寸單位:厘米),求一下這個零件的體積和表面積(寫清計算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示,在△ABC中,∠ABC=45°,CD⊥ABD,BE平分∠ABC,且BE⊥AC于點E,與CD相交于點F.HBC邊上的中點,連接DHBE相交于點G.

(1)求證:BF=AC;

(2)求證:CE=BF;

(3)請你根據(jù)該題的條件并結(jié)合圖形,自己提出一個問題,并解答或證明你提出的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:“噢,我知道路燈有多高了!”同學(xué)們,請你和小明一起解答這個問題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.

求證:CA+AD=BC.

小明為解決上面的問題作了如下思考:作△ADC關(guān)于直線CD的對稱圖形△A′DC,

∵CD平分∠ACB,∴A′點落在CB上,且CA′=CA,A′D=AD.因此,要證的問題轉(zhuǎn)化為只要證A′D=A′B.請根據(jù)小明的思考寫出該問題完整的證明過程.

(2)參照(1)中小明的思考方法,解答下列問題:

如圖3,在四邊形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P,Q分別是∠AOB的邊OA,OB上的點.

(1)過點POB的垂線,垂足為H;

(2)過點QOA的垂線,交OA于點C,連接PQ;

(3)線段QC的長度是點Q 的距離, 的長度是點P到直線OB的距離,因為直線外一點和直線上各點連接的所有線段中,垂線段最短,所以線段PQ、PH的大小關(guān)系是 (用“<”號連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家居專營店用2730元購進A、B兩種新型玻璃保溫杯共60,這兩種玻璃保溫杯的進價、標(biāo)價如表所示

(1)這兩種玻璃保溫杯各購進多少個?

(2)A型玻璃保溫杯按標(biāo)價的9折出售,B型玻璃保溫杯按標(biāo)價的8.5折出售,且在運輸過程中有2A型、1B型玻璃保溫杯不慎損壞,不能進行銷售,請問這批玻璃保溫杯全部售出后,該家居專營店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P是⊙O外一點,PA、PB分別與⊙O相切于點A、B,點C是劣弧AB上任意一點,經(jīng)過點C作⊙O的切線,分別交PA、PB于點D、E.若PA=4,則△PDE的周長是(  )
A.4
B.8
C.12
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2

(1)化簡:2B﹣A;

(2)已知﹣a|x2|b2aby的同類項,求2B﹣A的值

查看答案和解析>>

同步練習(xí)冊答案