【題目】如圖,已知ADBC,BC,垂足分別為D、F,23180,試說明:GDCB,請補充說明過程,并在括號內填上相應的理由。
解:ADBC,EFBC(已知)
ADBEFB90( ① ),
EF//AD( ② ),
③ 2180( ④ ),
又23180(已知),
13( ⑤ ),
AB// ⑥ ( ⑦ ),
∴∠GDC=∠B( ⑧ )
【答案】垂直的定義;同位角相等,兩直線平行;∠1,兩直線平行,同旁內角互補;同角的補角相等;DG;內錯角相等,兩直線平行;兩直線平行,同位角相等.
【解析】
根據(jù)平行線的判定與性質解答,先證明EF//AD,再證明AB∥DG即可.
解:推理如下:
證明:,,(已知)
,(垂直的定義)
∴EF//AD,(同位角相等,兩直線平行)
∴,(兩直線平行同旁內角互補)
又,(已知)
所以,(同角的補角相等)
則,(內錯角相等,兩直線平行)
,(兩直線平行同位角相等).
故答案為:垂直的定義;同位角相等,兩直線平行;∠1,兩直線平行,同旁內角互補;同角的補角相等;DG;內錯角相等,兩直線平行;兩直線平行,同位角相等.
科目:初中數(shù)學 來源: 題型:
【題目】點的“值”定義如下:若點為圓上任意一點,線段長度的最大值與最小值之差即為點的“值”,記為.特別的,當點, 重合時,線段的長度為0.
當⊙的半徑為2時:
(1)若點, ,則_________, _________;
(2)若在直線上存在點,使得,求出點的橫坐標;
(3)直線與軸, 軸分別交于點, .若線段上存在點,使得,請你直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店用6000元購進A、B兩款新式服裝,按標價出售后可獲毛利潤3800元(利潤=售價-進價),這兩款服裝的進價、標價如下表所示:
(1)求這兩種服裝各購進的件數(shù);
(2)由于市場競爭激烈,A款服裝只能按標價的9折出售,B款服裝只能按標價的8折出售,那么這批服裝全部售完后,服裝店毛利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,MN是一條東西方向的海岸線,在海岸線上的A處測得一海島在南偏西32°的方向上,向東走過780米后到達B處,測得海島在南偏西37°的方向,求小島到海岸線的距離.
(參考數(shù)據(jù):tan37°= cot53°≈0.755,cot37°= tan53°≈1.327,tan32°= cot58°≈0.625,cot32°= tan58°≈1.600.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯(lián)結PD、AD.
(1)求△ABC的面積;
(2)設PB=x,△APD的面積為y,求y關于x的函數(shù)關系式,并寫出定義域;
(3)如果△APD是直角三角形,求PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形AOCB的頂點B在反比例函數(shù),x>0)的圖像上,且AB=3,BC=8.若動點E從A開始沿AB向B以每秒1個單位長度的速度運動,同時動點F從B開始沿BC向C以每秒2個單位長度的速度運動,當其中一個動點到達端點時,另一個動點隨之停止運動,設運動時間為t秒.
(1)求反比例函數(shù)的表達式.
(2)當t=1時,在y軸上是否存在點D,使△DEF的周長最?若存在,請求出△DEF的周長最小值;若不存在,請說明理由.
(3)在雙曲線上是否存在一點M,使以點B、E、F、M為頂點的四邊形是平行四邊形?若存在,請求出滿足條件t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年2月3日至2019年2月20日,“第一屆”成都金沙太陽節(jié)在金沙遺址博物館成功舉辦,用世界文明展覽,主題燈展,園林花藝,美食演繹等一系列文化活動,與瑪雅這一著名的中美洲文明結下不解之緣,為成都人打造了一個博物館里的“文化年”.春節(jié)當天,小杰于下午點乘車從家出發(fā),當天按原路返回.如圖,是小杰出行的過程中,他距家的距離(千米)與他離家的時間(小時)之間的圖像.根據(jù)圖像,完成下面的問題:
(1)小杰家距金沙遺址博物館 千米,他乘車去金沙遺址博物館的速度是 千米/小時;
(2)已知晚上點時,小杰距家千米,請通過計算說明他何時才能回到家?
(3)請直接寫出小杰回家過程中與的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂
點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),
則三角板的最大邊的長為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com