【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)為A、D(A在D的右側(cè)),與y軸的交點(diǎn)為C,且A(4,0),C(0,﹣3),對(duì)稱(chēng)軸是直線x=1.

(1)求二次函數(shù)的解析式;
(2)若M是第四象限拋物線上一動(dòng)點(diǎn),且橫坐標(biāo)為m,設(shè)四邊形OCMA的面積為s.請(qǐng)寫(xiě)出s與m之間的函數(shù)關(guān)系式,并求出當(dāng)m為何值時(shí),四邊形OCMA的面積最大;
(3)設(shè)點(diǎn)B是x軸上的點(diǎn),P是拋物線上的點(diǎn),是否存在點(diǎn)P,使得以A,B、C,P四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:∵A(4,0),對(duì)稱(chēng)軸是直線x=l,

∴D(﹣2,0).

又∵C(0,﹣3)

解得.a(chǎn)= ,b=﹣ ,c=﹣3,

∴二次函數(shù)解析式為:y= x2 x﹣3.


(2)

解:如圖1所示:

設(shè)M(m, x2 x﹣3),|yM|=﹣ m2+ m+3,

∵S=SACM+SOAM

∴S= ×OC×m+ ×OA×|yM|= ×3×m+ ×4×(﹣ m2+ m+3)=﹣ m2+3m+6=﹣ (m﹣2)2+9,

當(dāng)m=2時(shí),s最大是9.


(3)

解:當(dāng)AB為平行四邊形的邊時(shí),則AB∥PC,

∴PC∥x軸.

∴點(diǎn)P的縱坐標(biāo)為﹣3.

將y=﹣3代入得: x2 x﹣3=﹣3,解得:x=0或x=2.

∴點(diǎn)P的坐標(biāo)為(2,﹣3).

當(dāng)AB為對(duì)角線時(shí).

∵ABCP為平行四邊形,

∴AB與CP互相平分,

∴點(diǎn)P的縱坐標(biāo)為3.

把y=3代入得: x2 x﹣3=3,整理得:x2﹣2x﹣16=0,解得:x=1+ 或x=1﹣

綜上所述,存在點(diǎn)P(2,﹣3)或P(1+ ,3)或P(1﹣ ,3)使得以A,B、C,P四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形.


【解析】(1)利用拋物線的對(duì)稱(chēng)性可得到點(diǎn)D的總表,然后將A、C、D的坐標(biāo)代入拋物線的解析式可求得a、b、c的值,從而可得到二次函數(shù)的解析式;(2)設(shè)M(m, x2 x﹣3),|yM|=﹣ m2+ m+3,由S=SACM+SOAM可得到S與m的函數(shù)關(guān)系式,然后利用配方法可求得S的最大值;(3)當(dāng)AB為平行四邊形的邊時(shí),則AB∥PC,則點(diǎn)P的縱坐標(biāo)為﹣3,將y=﹣3代入拋物線的解析式可求得點(diǎn)P的橫坐標(biāo);當(dāng)AB為對(duì)角線時(shí),AB與CP互相平分,則點(diǎn)P的縱坐標(biāo)為3,把y=3代入拋物線的解析式可求得點(diǎn)P的橫坐標(biāo).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y= x2+bx+c經(jīng)過(guò)點(diǎn)B(3,0),C(0,﹣2),直線l:y=﹣ x﹣ 交y軸于點(diǎn)E,且與拋物線交于A,D兩點(diǎn),P為拋物線上一動(dòng)點(diǎn)(不與A,D重合).

(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線l下方時(shí),過(guò)點(diǎn)P作PM∥x軸交l于點(diǎn)M,PN∥y軸交l于點(diǎn)N,求PM+PN的最大值.
(3)設(shè)F為直線l上的點(diǎn),以E,C,P,F(xiàn)為頂點(diǎn)的四邊形能否構(gòu)成平行四邊形?若能,求出點(diǎn)F的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形、菱形、正方形都是平行四邊形,但它們都是有特殊條件的平行四邊形,正方形不僅是特殊的矩形,也是特殊的菱形.因此,我們可利用矩形、菱形的性質(zhì)來(lái)研究正方形的有關(guān)問(wèn)題.回答下列問(wèn)題:
(1)將平行四邊形、矩形、菱形、正方形填入它們的包含關(guān)系的下圖中.
(2)要證明一個(gè)四邊形是正方形,可先證明四邊形是矩形,再證明這個(gè)矩形的相等;或者先證明四邊形是菱形,在證明這個(gè)菱形有一個(gè)角是
(3)某同學(xué)根據(jù)菱形面積計(jì)算公式推導(dǎo)出對(duì)角線長(zhǎng)為a的正方形面積是S=0.5a2 , 對(duì)此結(jié)論,你認(rèn)為是否正確?若正確,請(qǐng)說(shuō)明理由;若不正確,請(qǐng)舉出一個(gè)反例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程ax2﹣(a+2)x+2=0有兩個(gè)不相等的正整數(shù)根時(shí),整數(shù)a的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線上.

(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算: +|1﹣ |+ +( 1﹣20170

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過(guò)點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于E和F.

(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(guò)(1)中拋物線的頂點(diǎn)時(shí),求CF的長(zhǎng);
(3)連接EF,設(shè)△BEF與△BFC的面積之差為S,問(wèn):當(dāng)CF為何值時(shí)S最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,D是⊙O上一點(diǎn),且∠EDC=30°,弦EF∥AB,則EF的長(zhǎng)度為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑了4.5km到達(dá)學(xué)校,最后又向東,跑回到自己家.
(1)以小明家為原點(diǎn),以向東為正方向,用1個(gè)單位長(zhǎng)度表示1km,在圖中的數(shù)軸上,分別用點(diǎn)A表示出小彬家,用點(diǎn)B表示出小紅家,用點(diǎn)C表示出學(xué)校的位置;

(2)求小彬家與學(xué)校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長(zhǎng)時(shí)間?

查看答案和解析>>

同步練習(xí)冊(cè)答案