如圖在△ABC中,∠ACB=90°,CD⊥AB,DE⊥BC,那么與△ABC相似的三角形的個數(shù)有( )

A.1個
B.4個
C.3個
D.2個
【答案】分析:根據(jù)已知利用相似三角形的判定方法找出題中與△ABC相似的三角形即可.
解答:解:∵∠ACB=90°,CD⊥AB,DE⊥BC
∴∠BED=∠CED=∠CDB=∠CDA=∠ACB=90°
∵∠A=∠A,∠B=∠B,∠DCB=∠ECD
∴△ADC∽△ACB;
△CDB∽△ACB;
△DEB∽△ACB;
△CED∽△ACB;
∴共有4個
故選B
點評:此題考查了相似三角形的判定:
①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;
③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、如圖在△ABC中,∠ACB=90°,CD是邊AB上的高.那么圖中與∠A相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,∠ABC=50°,∠ACB=75°,點O是內(nèi)心,則∠BOC的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線
∴E是AB的中點
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線合一
等腰三角形三線合一

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的兩點,則圖中陰影部分的面積是
20
20

查看答案和解析>>

同步練習冊答案