已知,如圖在△ABC中,AD是BC邊上的高線(xiàn),CE是AB邊上的中線(xiàn),DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線(xiàn)
∴E是AB的中點(diǎn)
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線(xiàn)等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線(xiàn)合一
等腰三角形三線(xiàn)合一
分析:根據(jù)直角三角形斜邊上的中線(xiàn)等于斜邊的一半和等腰三角形三線(xiàn)合一的性質(zhì)填空.
解答:證明:∵AD⊥BC,
∴∠ADB=90°,
∵CE是AB邊上的中線(xiàn),
∴E是AB的中點(diǎn),
∴DE=
1
2
AB(直角三角形斜邊上的中線(xiàn)等于斜邊的一半),
又∵AE=
1
2
AB,
∴AE=DE,
∵AE=CD,
∴DE=CD,
即△DCE是等腰三角形,
∵DG平分∠CDE,
∴CG=EG(等腰三角形三線(xiàn)合一).
故答案為:
1
2
AB;等腰;等腰三角形三線(xiàn)合一.
點(diǎn)評(píng):本題考查了直角三角形斜邊上的中線(xiàn)等于斜邊的一半的性質(zhì),等腰三角形三線(xiàn)合一的性質(zhì),是基礎(chǔ)題,熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖在△ABC中,DE∥BC,
AD
DB
=
1
3
,則
DE
BC
=( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、已知:如圖在△ABC中,AD平分∠BAC,AD⊥BC,則△ACD≌△ABD的根據(jù)是
ASA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖在△ABC中,∠C=90°,BD是∠ABC的內(nèi)角平分線(xiàn),BC=2
3
,BD=4,求AB和AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖在△ABC中,∠ACB=90°,AC=8,BC=6,CD、CE分別是斜邊AB上的中線(xiàn)和高.則下列結(jié)論錯(cuò)誤的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案