【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(3,2)、(﹣1,0),若將線段BA繞點B順時針旋轉(zhuǎn)90°得到線段BA′,則點A′的坐標為 .
【答案】(1,﹣4)
【解析】解:作AC⊥x軸于C,
∵點A、B的坐標分別為(3,2)、(﹣1,0),
∴AC=2,BC=3+1=4,
把Rt△BAC繞點B順時針旋轉(zhuǎn)90°得到△BA′C′,如圖,
∴BC′=BC=4,A′C′=AC=2,
∴點A′的坐標為(1,﹣4).
所以答案是(1,﹣4).
【考點精析】認真審題,首先需要了解圖形的旋轉(zhuǎn)(每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度,任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素).
科目:初中數(shù)學 來源: 題型:
【題目】“宜居襄陽”是我們的共同愿景,空氣質(zhì)量備受人們關(guān)注.我市某空氣質(zhì)量監(jiān)測站點檢測了該區(qū)域每天的空氣質(zhì)量情況,統(tǒng)計了2013年1月份至4月份若干天的空氣質(zhì)量情況,并繪制了如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解答下列問題:
(1)統(tǒng)計圖共統(tǒng)計了 天的空氣質(zhì)量情況;
(2)請將條形統(tǒng)計圖補充完整;空氣質(zhì)量為“優(yōu)”所在扇形的圓心角度數(shù)是 ;
(3)從小源所在環(huán)保興趣小組4名同學(2名男同學,2名女同學)中,隨機選取兩名同學去該空氣質(zhì)量監(jiān)測站點參觀,則恰好選到一名男同學和一名女同學的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,把點P(﹣5,3)向右平移8個單位得到點P1 , 再將點P1繞原點旋轉(zhuǎn)90°得到點P2 , 則點P2的坐標是( )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACB和△DCE均為等腰三角形,點A,D,E在同一直線上,連接BE.
(1)如圖1,若∠CAB=∠CBA=∠CDE=∠CED=50°
①求證:AD=BE;
②求∠AEB的度數(shù).
(2)如圖2,若∠ACB=∠DCE=120°,CM為△DCE中DE邊上的高,BN為△ABE中AE邊上的高,試證明:AE=CM+BN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是( 。
A. 兩條對角線相等的四邊形是平行四邊形
B. 兩條對角線相等且互相垂直的四邊形是矩形
C. 兩條對角線互相垂直平分的四邊形是菱形
D. 兩條對角線互相垂直平分且相等的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為深化義務(wù)教育課程改革,滿足學生的個性化學習需求,某校就“學生對知識拓展,體育特長、藝術(shù)特長和實踐活動四類選課意向”進行了抽樣調(diào)查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下列問題:
(1)扇形統(tǒng)計圖中m的值為 ,n的值為 ;
(2)補全條形統(tǒng)計圖;
(3)在選擇B類的學生中,甲、乙、丙三人在乒乓球項目表現(xiàn)突出,現(xiàn)決定從這三名同學中任選兩名參加市里組織的乒乓球比賽,選中甲同學的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com