【題目】如圖,∠AOB20°,點(diǎn)MN分別是邊OAOB上的定點(diǎn),點(diǎn)PQ分別是邊OB、OA上的動(dòng)點(diǎn),記∠MPQα,∠PQNβ,當(dāng)MP+PQ+QN最小時(shí),則βα的值為_____

【答案】40°.

【解析】

M關(guān)于OB的對(duì)稱點(diǎn)M',N關(guān)于OA的對(duì)稱點(diǎn)N',連接M'N'OAQ,交OBP,則MP+PQ+QN最小,易知∠OPM=OPM'=NPQ,∠OQP=AQN'=AQN,根據(jù)三角形的外角的性質(zhì)和平角的定義即可得到結(jié)論.

如圖,作M關(guān)于OB的對(duì)稱點(diǎn)M',N關(guān)于OA的對(duì)稱點(diǎn)N',連接M'N'OAQ,交OBP,則MP+PQ+QN最小,

∴∠OPM=OPM'=NPQ,∠OQP=AQN'=AQN,

∴∠QPN180°﹣α=AOB+MQP=20°180°﹣β),

180°﹣α=40°+180°﹣β),

βα=40°.

故答案為:40°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,∠ABC=90°,ABBC,E、M分別為AB、AC上的點(diǎn),連接CE,BM交于點(diǎn)G,且BMCE,OAC的中點(diǎn),連接BOCE于點(diǎn)N

(1)如圖,若AB=6,2MOAM,求BM的長(zhǎng);

(2)如圖,連接OG、AG,若AGOG,求證:ACBG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】科技改變世界.2017年底,快遞分揀機(jī)器人從微博火到了朋友圈,據(jù)介紹,這些機(jī)器人不僅可以自動(dòng)規(guī)劃最優(yōu)路線,將包裹準(zhǔn)確地放入相應(yīng)的格口,還會(huì)感應(yīng)避讓障礙物,自動(dòng)歸隊(duì)取包裹.沒(méi)電的時(shí)候還會(huì)自己找充電樁充電.某快遞公司啟用80臺(tái)A種機(jī)器人、300臺(tái)B種機(jī)器人分揀快遞包裹.A,B兩種機(jī)器人全部投入工作,1小時(shí)共可以分揀1.44萬(wàn)件包裹,若全部A種機(jī)器人工作3小時(shí),全部B種機(jī)器人工作2小時(shí),一共可以分揀3.12萬(wàn)件包裹.

(1)求兩種機(jī)器人每臺(tái)每小時(shí)各分揀多少件包裹;

(2)為了進(jìn)一步提高效率,快遞公司計(jì)劃再購(gòu)進(jìn)A,B兩種機(jī)器人共200臺(tái),若要保證新購(gòu)進(jìn)的這批機(jī)器人每小時(shí)的總分揀量不少于7000件,求最多應(yīng)購(gòu)進(jìn)A種機(jī)器人多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣5,0),B5,0),D2,7),連接ADy軸于C點(diǎn).

1)求C點(diǎn)的坐標(biāo);

2)動(dòng)點(diǎn)PB點(diǎn)出發(fā)以每秒1個(gè)單位的速度沿BA方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)QC點(diǎn)出發(fā)也以每秒1個(gè)單位的速度沿y軸正半軸方向運(yùn)動(dòng)(當(dāng)P點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),兩點(diǎn)都停止運(yùn)動(dòng)).設(shè)從出發(fā)起運(yùn)動(dòng)了x秒.

①請(qǐng)用含x的代數(shù)式分別表示P,Q兩點(diǎn)的坐標(biāo);

②當(dāng)x2時(shí),y軸上是否存在一點(diǎn)E,使得AQE的面積與APQ的面積相等?若存在,求E的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).

李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊△ABC的邊長(zhǎng)為,問(wèn)題得到解決.

請(qǐng)你參考李明同學(xué)的思路,探究并解決下列問(wèn)題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng),為了吸引顧客,在白色情人節(jié)當(dāng)天舉辦了商品有獎(jiǎng)酬賓活動(dòng),凡購(gòu)物滿200元者,有兩種獎(jiǎng)勵(lì)方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎(jiǎng)的機(jī)會(huì).已知在搖獎(jiǎng)機(jī)內(nèi)裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,搖獎(jiǎng)?wù)弑仨殢膿u獎(jiǎng)機(jī)內(nèi)一次連續(xù)搖出兩個(gè)球,根據(jù)球的顏色(如表)決定送禮金券的多少.

兩紅

一紅一白

兩白

禮金券(元)

18

24

18

1)請(qǐng)你用列表法(或畫(huà)樹(shù)狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.

2)如果一名顧客當(dāng)天在本店購(gòu)物滿200元,若只考慮獲得最多的禮品券,請(qǐng)你幫助分析選擇哪種方案較為實(shí)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)A、Dy軸正半軸上,點(diǎn)BC分別在x軸上,CD平分∠ACB,與y軸交于D點(diǎn),∠CAO=90°-BDO.

1)求證:AC=BC

2)如圖2,點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)EAC上一點(diǎn),且∠DEA=DBO,求BC+EC的長(zhǎng);

3)如圖3,過(guò)DDFACF點(diǎn),點(diǎn)HFC上一動(dòng)點(diǎn),點(diǎn)GOC上一動(dòng)點(diǎn),當(dāng)HFC上移動(dòng)、點(diǎn)GOC上移動(dòng)時(shí),始終滿足∠GDH=GDO+FDH,試判斷FHGH、OG這三者之間的數(shù)量關(guān)系,寫(xiě)出你的結(jié)論并加以證明.

(圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),且滿足BE=BC.連接CE并延長(zhǎng)交AD于點(diǎn)F,連接AE,過(guò)B點(diǎn)作BGAE于點(diǎn)G,延長(zhǎng)BGAD于點(diǎn)H.在下列結(jié)論中:

AH=DF; ②∠AEF=45°; ③S四邊形EFHG=SDEF+SAGH,

其中正確的結(jié)論有_____________________.(填正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化工材料經(jīng)銷公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千克30元。物價(jià)部門(mén)規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元。經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100。在銷售過(guò)程中,每天還要支付其他費(fèi)用450元。

(1)求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍。

(2)求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式。

(3)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元。

查看答案和解析>>

同步練習(xí)冊(cè)答案