【題目】學著說點理:補全證明過程:
如圖,已知,,垂足分別為,,,試證明:.請補充證明過程,并在括號內填上相應的理由.
證明:∵,(已知)
∴(___________________),
∴(___________________),
∴________(___________________).
又∵(已知),
∴(___________________),
∴________(___________________),
∴(___________________).
【答案】垂直的定義;同位角相等,兩直線平行;∠1;兩直線平行,同旁內角互補;同角的補角相等;DG;內錯角相等,兩直線平行;兩直線平行,同位角相等.
【解析】
根據(jù)平行線的判定和性質,垂直的定義,同角的補角相等知識一一判斷即可.
解:∵AD⊥BC,EF⊥BC(已知)
∴∠ADB=∠EFB=90°(垂直的定義),
∴EF∥AD(同位角相等,兩直線平行),
∴∠1+∠2=180°(兩直線平行,同旁內角互補),
又∵∠2+∠3=180°(已知),
∴∠1=∠3(同角的補角相等),
∴AB∥DG(內錯角相等,兩直線平行),
∴∠GDC=∠B(兩直線平行,同位角相等).
故答案為:垂直的定義;同位角相等,兩直線平行;∠1;兩直線平行,同旁內角互補;同角的補角相等;DG;內錯角相等,兩直線平行;兩直線平行,同位角相等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC,BD交于點O,AE⊥BC交CB延長線于E,CF∥AE交AD延長線于點F.
(1)求證:四邊形AECF是矩形;
(2)連接OE,若AE=4,AD=5,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:已知Rt△ABC的周長為30,斜邊長c=13,求△ABC的面積.、
解法展示:設Rt△ABC的兩直角邊長分別為a,b,則a+b+c=①______,
因為c=13,所以a+b=②______,
所以(a+b)2=③______,所以a2+ b2+④_____=289.
因為a2+b2=c2,所以c2+2ab=289,
所以⑤______+2ab=289,所以ab=⑥______(第1步),
所以△ABC的面積=ab=×⑦______=⑧______(第2步).
合作探究:(1)對解法展示進行填空.
(2)上述解題過程中,由第1步到第2步體現(xiàn)出來的數(shù)學思想是______(填序號).
①整體思想;②數(shù)形結合思想;③分類討論思想.
方法遷移:
(3)已知一直角三角形的面積為24,斜邊長為10,求這個直角三角形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了 名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
(4)某天甲、乙兩名同學都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選中同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,直徑AB⊥弦CD于點E,連接AC,BC,點F是BA延長線上的一點,且∠FCA=∠B.
(1)求證:CF是⊙O的切線;
(2)若AE=4,tan∠ACD=,求FC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點P是線段AD上一動點,O為BD的中點,PO的延長線交BC于點Q。
(1)求證:OP=OQ;
(2)若AD=8cm,AB=6cm,P從點A出發(fā),以1cm/秒的速度向點D運動(不與點D重合),設點P運動時間為t秒,請用t表示PD的長;并求當t為何值時,四邊形PBQD是菱形。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,RtΔOAB中,點O(0,0),點A(6,0),點B(0,6),斜邊AB的中點C.
點E從點B出發(fā),沿BO方向,點F從點O出發(fā),沿OA方向,速度都是1個單位/秒,時間是t秒,連接CE、CF、EF,
(1)直接寫出C點坐標______.
(2)判斷ΔCEF的形狀,并證明;
(3)在0<t<6時,以C、E、F、O四點組成的四邊形面積是否發(fā)生變化?不變,求出這個值;變化,用含t的式子表示;
(4)在t>6時,以C、E、F、O四點組成的四邊形面積是否發(fā)生變化?不變,求出這個值;變化,用含t的式子表示.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)探究新知:如圖1,已知與的面積相等,試判斷與的位置關系,并說明理由.
(2)結論應用:
①如圖2,點,在反比例函數(shù)的圖像上,過點作軸,過點作軸,垂足分別為,,連接.試證明:.
②若①中的其他條件不變,只改變點,的位置如圖3所示,請畫出圖形,判斷與的位置關系并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com