【題目】已知:如圖,在平面直角坐標(biāo)系中,直線分別與、軸交于點(diǎn),,與反比例函數(shù)的圖象分別交于點(diǎn)、軸于點(diǎn),,.

1)求直線的解析式;

2)求該反比例函數(shù)的解析式;

3)連接,,求的面積.

【答案】(1);(2);(3)8.

【解析】

1)根據(jù)條件可得到AB兩點(diǎn)的坐標(biāo),然后利用待定系數(shù)法即可求出直線AB的解析式;

2)利用平行線分線段成比例定理求出EO的長(zhǎng),得到C點(diǎn)的橫坐標(biāo),代入直線AB的解析式確定C點(diǎn)坐標(biāo),然后利用待定系數(shù)法求反比例函數(shù)解析式;

3)先解方程組,得D點(diǎn)坐標(biāo),然后利用SOCD=SOAC+SOAD進(jìn)行計(jì)算.

1)∵OB=4OA=2,∴A點(diǎn)坐標(biāo)為(0,2),B點(diǎn)坐標(biāo)為(4,0).

設(shè)直線AB的解析式為y=kx+b,把A0,2)、B4,0)代入,得:,解得:,∴直線AB的解析式為yx+2;

2)∵OACE,∴EOOB=CAAB=12,∴EOOB=2,∴C點(diǎn)的橫坐標(biāo)為﹣2

x=2代入yx+2,得:y(﹣2+2=3,∴C點(diǎn)坐標(biāo)為(﹣2,3).

設(shè)反比例函數(shù)解析式為y,把C(﹣2,3)代入,得:m=2×3=6,∴反比例函數(shù)解析式為y;

3)解方程組,得,則D6,﹣1).

SOCD=SOAC+SOAD2×22×6=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)一班開(kāi)展了讀一本好書(shū)的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書(shū)籍的情況進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷設(shè)置了小說(shuō)”“戲劇”“散文”“其他四個(gè)類(lèi)型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

類(lèi)別

頻數(shù)(人數(shù))

頻率

小說(shuō)

0.5

戲劇

4

散文

10

0.25

其他

6

合計(jì)

1

根據(jù)圖表提供的信息,解答下列問(wèn)題:

1)九年級(jí)一班有多少名學(xué)生?

2)請(qǐng)補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中其他類(lèi)所占的百分比;

3)在調(diào)查問(wèn)卷中,甲、乙、丙、丁四位同學(xué)選擇了戲劇類(lèi),現(xiàn)從以上四位同學(xué)中任意選出 2 名同學(xué)參加學(xué)校的戲劇興趣小組,請(qǐng)用畫(huà)樹(shù)狀圖或列表法的方法,求選取的 2 人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BE平分ABC交AC于點(diǎn)E,過(guò)點(diǎn)E作EDBC交AB于點(diǎn)D.

(1)求證:AEBC=BDAC;

(2)如果=3,=2,DE=6,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個(gè)數(shù)是 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為(1,2),(-2,3),(-1,0),把它們的橫坐標(biāo)和縱坐標(biāo)都擴(kuò)大到原來(lái)的2倍,得到點(diǎn), , .下列說(shuō)法正確的是(  )

A. 與△ABC是位似圖形,位似中心是點(diǎn)(1,0)

B. 與△ABC是位似圖形,位似中心是點(diǎn)(0,0)

C. 與△ABC是相似圖形,但不是位似圖形

D. 與△ABC不是相似圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:為緩解交通擁堵問(wèn)題,小李將上班方式由自駕車(chē)改為騎電動(dòng)車(chē).他從家到達(dá)上班地點(diǎn),自駕車(chē)要走的路程為10千米,騎電動(dòng)車(chē)要走的路程為8千米,已知小李自駕車(chē)的速度是騎電動(dòng)車(chē)速度的1.5倍,他由自駕車(chē)改為騎電動(dòng)車(chē)后,時(shí)間多用了6分鐘.求小李自駕車(chē)和騎電動(dòng)車(chē)的速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小琴的父母承包了一塊荒山地種植一批梨樹(shù),今年收獲一批金溪密梨,小琴的父母打算以m元/斤的零售價(jià)銷(xiāo)售5000斤密梨;剩余的5000(m1)斤密犁以比零售價(jià)低1元的批發(fā)價(jià)批給外地客商,預(yù)計(jì)總共可賺得55 000元的毛利潤(rùn).

1)求小琴的父母今年共收獲金溪密梨多少斤?

2)若零售金溪密梨平均每天可售出200斤,每斤盈利2元.為了加快銷(xiāo)售和獲得較好的售價(jià),采取了降價(jià)措施,發(fā)現(xiàn)銷(xiāo)售單價(jià)每降低0.1元,平均每天可多售出40斤,應(yīng)降價(jià)多少元?每天銷(xiāo)售利潤(rùn)為600元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)的對(duì)稱軸為直線x=2,且拋物線經(jīng)過(guò)A-1,0),C0-5)兩點(diǎn),與x軸交于點(diǎn)B

1)若直線y=mx+n經(jīng)過(guò)BC兩點(diǎn),求直線BC和拋物線的解析式;

2)設(shè)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),連接PB、PC,若BPC是以BC為直角邊的直角三角形,求此時(shí)點(diǎn)P的坐標(biāo);

3)在拋物線上BC段有另一個(gè)動(dòng)點(diǎn)Q,以點(diǎn)Q為圓心作Q,使得Q與直線BC相切,在運(yùn)動(dòng)的過(guò)程中是否存在一個(gè)最大Q. 若存在,請(qǐng)直接寫(xiě)出最大Q的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線與x軸交于點(diǎn)A(﹣1,0),B(3,0),與y軸交于點(diǎn)C(0,﹣3),拋物線頂點(diǎn)為D,連接AC,BC,CD,BD,點(diǎn)P是x軸下方拋物線上的一個(gè)動(dòng)點(diǎn),作PM⊥x軸于點(diǎn)M,設(shè)點(diǎn)M的橫坐標(biāo)為m.

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

(2)試探究是否存在這樣的點(diǎn)P,使得以P,M,B為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)如圖2,PM交線段BC于點(diǎn)Q,過(guò)點(diǎn)P作PE∥AC交x軸于點(diǎn)E,交線段BC于點(diǎn)F,請(qǐng)用含m的代數(shù)式表示線段QF的長(zhǎng),并求出當(dāng)m為何值時(shí)QF有最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案