【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,試判斷DG與BC的位置關(guān)系,并說明理由.
【答案】解:DG∥BC. 證明:∵CD⊥AB,EF⊥AB,
∴EF∥CD;
∴∠1=∠DCB,
∵∠1=∠2,
∴∠DCB=∠2,
∴DG∥BC.
【解析】根據(jù)垂直于同一條直線的兩直線平行,先判定EF∥CD,根據(jù)兩直線平行同位角相等,得∠1=∠DCB,結(jié)合已知,根據(jù)等量代換可得∠DCB=∠2,從而根據(jù)內(nèi)錯(cuò)角相等兩直線平行得證.
【考點(diǎn)精析】掌握平行線的判定與性質(zhì)是解答本題的根本,需要知道由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×4的正方形網(wǎng)格中,點(diǎn)A、B、C、D、E、F都在格點(diǎn)上.連接點(diǎn)A、B得線段AB.
(1)連接C、D、E、F中的任意兩點(diǎn),共可得 條線段,在圖中畫出來;
(2)在(1)中所連得的線段中,與AB平行的線段是 ;
(3)用三角尺或量角器度量、檢驗(yàn),AB及(1)中所連得的線段中,互相垂直的線段有幾對?(請用“⊥”表示出來) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算中,錯(cuò)誤的運(yùn)算有( ) ①(2x+y)2=4x2+y2 , ②(a﹣3b)2=a2﹣9b2 ,
③(﹣x﹣y)2=x2﹣2xy+y2 , ④(x﹣ )2=x2﹣2x+ .
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A、B兩個(gè)旅游點(diǎn)從2010年至2014年“五、一”的旅游人數(shù)變化情況分別用實(shí)線和虛線表示.根據(jù)圖中所示解答以下問題:
(1)B旅游點(diǎn)的旅游人數(shù)相對上一年,增長最快的是哪一年?
(2)求A、B兩個(gè)旅游點(diǎn)從2010到2014年旅游人數(shù)的平均數(shù)和方差,并從平均數(shù)和方差的角度,用一句話對這兩個(gè)旅游點(diǎn)的情況進(jìn)行評價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正六邊形ABCDEF內(nèi)放入2008個(gè)點(diǎn),若這2008個(gè)點(diǎn)連同正六邊形的六個(gè)頂點(diǎn)無三點(diǎn)共線,則該正六邊形被這些點(diǎn)分成互不重合的三角形共個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別于BC,AC相交于點(diǎn)D,E,BD=CD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求的長(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com