【題目】已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可繞點(diǎn)B旋轉(zhuǎn),設(shè)旋轉(zhuǎn)過(guò)程中直線CC′和AA′相交于點(diǎn)D.
(1)如圖1所示,當(dāng)點(diǎn)C′在AB邊上時(shí),判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)將Rt△A′BC′由圖1的位置旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(3)將Rt△A′BC′由圖1的位置按順時(shí)針?lè)较蛐D(zhuǎn)α角(0°≤α≤120°),當(dāng)A、C′、A′三點(diǎn)在一條直線上時(shí),請(qǐng)直接寫出旋轉(zhuǎn)角的度數(shù).
【答案】(1)AD=A′D,(2)仍然成立:AD=A′D(3)60°
【解析】
試題分析:(1)易證△BCC′和△BAA′都是等邊三角形,從而可以求出∠AC′D=∠BAD=60°,∠DC′A′=∠DA′C′=30°,進(jìn)而可以證到AD=DC′=A′D.
(2)解答中提供了兩種方法,分別利用相似與全等,證明所得的結(jié)論.
(3)當(dāng)A、C′、A′三點(diǎn)在一條直線上時(shí),有∠AC′B=90°,易證Rt△ACB≌Rt△AC′B (HL),從而可以求出旋轉(zhuǎn)角α的度數(shù).
試題解析:答:(1)AD=A′D.
證明:如圖1,
∵Rt△A′BC′≌Rt△ABC,
∴BC=BC′,BA=BA′.
∵∠A′BC′=∠ABC=60°,
∴△BCC′和△BAA′都是等邊三角形.
∴∠BAA′=∠BC′C=60°.
∵∠A′C′B=90°,
∴∠DC′A′=30°.
∵∠AC′D=∠BC′C=60°,
∴∠ADC′=60°.
∴∠DA′C′=30°.
∴∠DAC′=∠DC′A,∠DC′A′=∠DA′C′.
∴AD=DC′,DC′=DA′.
∴AD=A′D.
(2)仍然成立:AD=A′D.
證法一:利用相似.如圖2﹣1.
由旋轉(zhuǎn)可得,BA=BA′,BC=BC′,∠CBC′=∠ABA′
∵∠1=(180°﹣∠ABA′),∠3=(180°﹣∠CBC′)
∴∠1=∠3.
設(shè)AB、CD交于點(diǎn)O,則∠AOD=∠BOC
∴△BOC∽△DOA.
∴∠2=∠4,.
連接BD,
∵∠BOD=∠COA,
∴△BOD∽△COA.
∴∠5=∠6.
∵∠ACB=90°,
∴∠2+∠5=90°.
∴∠4+∠6=90°,即∠ADB=90°.
∵BA=BA′,∠ADB=90°,
∴AD=A′D.
證法二:利用全等.如圖2﹣2.
過(guò)點(diǎn)A作AE∥A′C′,交CD的延長(zhǎng)線于點(diǎn)E,則∠1=∠2,∠E=∠3.
由旋轉(zhuǎn)可得,AC=A′C′,BC=BC′,
∴∠4=∠5.
∵∠ACB=∠A′C′B=90°,
∴∠5+∠6=∠3+∠4=90°,
∴∠3=∠6.
∴∠E=∠6,∴AE=AC=A′C′.
在△ADE與△A′DC′中,
∴△ADE≌△A′DC′(ASA),
∴AD=A′D.
(3)當(dāng)A、C′、A′三點(diǎn)在一條直線上時(shí),如圖3,
則有∠AC′B=180°﹣∠A′C′B=90°.
在Rt△ACB和Rt△AC′B中,
.
∴Rt△ACB≌Rt△AC′B (HL).
∴∠ABC=∠ABC′=60°.
∴當(dāng)A、C′、A′三點(diǎn)在一條直線上時(shí),旋轉(zhuǎn)角α的度數(shù)為60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l和雙曲線y=(k>0)交于A、B兩點(diǎn),P是線段AB上的點(diǎn)(不與A、B重合),過(guò)點(diǎn)A、B、P分別向x軸作垂線,垂足分別為C、D、E,連接OA、OB、OP,設(shè)△AOC的面積為S1、△BOD的面積為S2、△POE的面積為S3,則( )
A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別相交于點(diǎn)A和B.
(1)直接寫出坐標(biāo):點(diǎn)A ,點(diǎn)B ;
(2)以線段AB為一邊在第一象限內(nèi)作□ABCD,其頂點(diǎn)D(, )在雙曲線 (>)上.
①求證:四邊形ABCD是正方形;
②試探索:將正方形ABCD沿軸向左平移多少個(gè)單位長(zhǎng)度時(shí),點(diǎn)C恰好落在雙曲線 (>)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,DF⊥DE于點(diǎn)D,并交EC的延長(zhǎng)線于點(diǎn)F.下列結(jié)論:
①CE=CF;
②線段EF的最小值為;
③當(dāng)AD=2時(shí),EF與半圓相切;
④若點(diǎn)F恰好落在B C上,則AD=;
⑤當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過(guò)的面積是.
其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l平行x軸,交y軸于點(diǎn)A,第一象限內(nèi)的點(diǎn)B在l上,連結(jié)OB,動(dòng)點(diǎn)P滿足∠APQ=90°,PQ交x軸于點(diǎn)C.
(1)當(dāng)動(dòng)點(diǎn)P與點(diǎn)B重合時(shí),若點(diǎn)B的坐標(biāo)是(2,1),求PA的長(zhǎng).
(2)當(dāng)動(dòng)點(diǎn)P在線段OB的延長(zhǎng)線上時(shí),若點(diǎn)A的縱坐標(biāo)與點(diǎn)B的橫坐標(biāo)相等,求PA:PC的值.
(3)當(dāng)動(dòng)點(diǎn)P在直線OB上時(shí),點(diǎn)D是直線OB與直線CA的交點(diǎn),點(diǎn)E是直線CP與y軸的交點(diǎn),若∠ACE=∠AEC,PD=2OD,求PA:PC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)在實(shí)施快樂(lè)大課間之前組織過(guò)“我最喜歡的球類”的調(diào)查活動(dòng),每個(gè)學(xué)生僅選擇一項(xiàng),通過(guò)對(duì)學(xué)生的隨機(jī)抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計(jì)圖.
(1)求出被調(diào)查的學(xué)生人數(shù);
(2)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時(shí)只有一副空球桌,他們只能選兩人打第一場(chǎng).如果確定小亮打第一場(chǎng),其余三人用“手心、手背”的方法確定誰(shuí)獲勝誰(shuí)打第一場(chǎng)若三人中有一人出的與其余兩人不同則獲勝;若三人出的都相同則平局.已知大剛出手心,請(qǐng)用樹狀圖分析大剛獲勝的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.
(1)若|a+c|+|b|=2,求b的值;
(2)用“>”從大到小把a(bǔ),b,﹣b,c連接起來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面為某年11月的日歷:
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
(1)在日歷上任意圈出一個(gè)豎列上相鄰的3個(gè)數(shù);
①設(shè)中間的一個(gè)數(shù)為,則另外的兩個(gè)數(shù)為 、 ;
②若已知這三個(gè)數(shù)的和為42,則這三天都在星期 ;
(2)在日歷上用一個(gè)小正方形任意圈出其中的9個(gè)數(shù),設(shè)圈出的9個(gè)數(shù)的中心的數(shù)為b,若這9個(gè)數(shù)的和為153,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).
(1)求此二次函數(shù)的表達(dá)式;
(2)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
【答案】(1)y=-x2-x+8(2)
【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點(diǎn)坐標(biāo),把B、C兩點(diǎn)坐標(biāo)代入二次函數(shù)的解析式就可解答;
(2)過(guò)點(diǎn)F作FG⊥AB,垂足為G,由EF∥AC,得△BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CAB求FG,根據(jù)S=S△BCE-S△BFE,求S與m之間的函數(shù)關(guān)系式.
解:(1)解方程x2-10x+16=0得x1=2,x2=8
∴B(2,0)、C(0,8)
∴所求二次函數(shù)的表達(dá)式為y=-x2-x+8
(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,
∵OA=6,OC=8, ∴AC=10.
∵EF∥AC, ∴△BEF∽△BAC.
∴=. 即=. ∴EF=.
過(guò)點(diǎn)F作FG⊥AB,垂足為G,
則sin∠FEG=sin∠CAB=.∴=.
∴FG=·=8-m.
∴S=S△BCE-S△BFE
=
(0<m<8)
點(diǎn)睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),span>銳角三角函數(shù)的定義,割補(bǔ)法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
23
【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A(0,﹣6),點(diǎn)B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角邊CD在y軸上,且點(diǎn)C與點(diǎn)A重合.Rt△CDE沿y軸正方向平行移動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)O時(shí)停止運(yùn)動(dòng).解答下列問(wèn)題:
(1)如圖(2),當(dāng)Rt△CDE運(yùn)動(dòng)到點(diǎn)D與點(diǎn)O重合時(shí),設(shè)CE交AB于點(diǎn)M,求∠BME的度數(shù).
(2)如圖(3),在Rt△CDE的運(yùn)動(dòng)過(guò)程中,當(dāng)CE經(jīng)過(guò)點(diǎn)B時(shí),求BC的長(zhǎng).
(3)在Rt△CDE的運(yùn)動(dòng)過(guò)程中,設(shè)AC=h,△OAB與△CDE的重疊部分的面積為S,請(qǐng)寫出S與h之間的函數(shù)關(guān)系式,并求出面積S的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com