【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點(diǎn)F是DA延長(zhǎng)線的一點(diǎn),AC平分∠FAB交⊙O于點(diǎn)C,過(guò)點(diǎn)C作CE⊥DF,垂足為點(diǎn)E.
(1)求證:CE是⊙O的切線;
(2)若AE=1,CE=2,求⊙O的半徑.
【答案】
(1)證明:連接CO,
∵OA=OC,
∴∠OCA=∠OAC,
∵AC平分∠FAB,
∴∠OCA=∠CAE,
∴OC//FD,
∵CE⊥DF,
∴OC⊥CE,
∴CE是⊙O的切線;
(2)證明:連接BC,
在Rt△ACE中,AC= = = ,
∵AB是⊙O的直徑,
∴∠BCA=90°,
∴∠BCA=∠CEA,
∵∠CAE=∠CAB,
∴△ABC∽△ACE,
∴ = ,
∴ ,
∴AB=5,
∴AO=2.5,即⊙O的半徑為2.5.
【解析】(1)證明:連接CO,證得∠OCA=∠CAE,由平行線的判定得到OC//FD,再證得OC⊥CE,即可證得結(jié)論;(2)證明:連接BC,由圓周角定理得到∠BCA=90°,再證得△ABC∽△ACE,根據(jù)相似三角形的性質(zhì)即可證得結(jié)論.
【考點(diǎn)精析】本題主要考查了角平分線的性質(zhì)定理和切線的判定定理的相關(guān)知識(shí)點(diǎn),需要掌握定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)觀察思考:如圖,線段AB上有兩個(gè)點(diǎn)C、D,請(qǐng)分別寫出以點(diǎn)A、B、C、D為端點(diǎn)的線段,并計(jì)算圖中共有多少條線段;
(2)模型構(gòu)建:如果線段上有m個(gè)點(diǎn)(包括線段的兩個(gè)端點(diǎn)),則該線段上共有多少條線段?請(qǐng)說(shuō)明你結(jié)論的正確性;
(3)拓展應(yīng)用:某班45名同學(xué)在畢業(yè)后的一次聚會(huì)中,若每?jī)扇宋?/span>1次手問(wèn)好,那么共握多少次手?
請(qǐng)將這個(gè)問(wèn)題轉(zhuǎn)化為上述模型,并直接應(yīng)用上述模型的結(jié)論解決問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,,點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A即停止;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止,點(diǎn)P、Q的速度都是,連接PQ、AQ、設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為ts.
當(dāng)t為何值時(shí),四邊形ABQP是矩形;
當(dāng)t為何值時(shí),四邊形AQCP是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,第一個(gè)正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)D的坐標(biāo)為(0,4),延長(zhǎng)CB交x軸于點(diǎn)A1,作第二個(gè)正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2,作第三個(gè)正方形A2B2C2C1…按這樣的規(guī)律進(jìn)行下去,第2018個(gè)正方形的面積為( )
A. 20×()2017 B. 20×()2018 C. 20×()4036 D. 20×()4034
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知線段AB=12cm,點(diǎn)C為線段AB上的一動(dòng)點(diǎn),點(diǎn)D,E分別是AC和BC中點(diǎn).
(1)若點(diǎn)C恰好是AB的中點(diǎn),則DE=_______cm;
(2)若AC=4cm,求DE的長(zhǎng);
(3)試說(shuō)明無(wú)論AC取何值(不超過(guò)12cm),DE的長(zhǎng)不變;
(4)如圖②,已知∠AOB=120°,過(guò)角的內(nèi)部任一點(diǎn)C畫射線OC.若OD,OE分別平分∠AOC和∠BOC.試說(shuō)明∠DOE的度數(shù)與射線OC的位置無(wú)關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大家在學(xué)完勾股定理的證明后發(fā)現(xiàn)運(yùn)用“同一圖形的面積不同表示方式相同”可 以證明一類含有線段的等式,這種解決問(wèn)題的方法我們稱之為面積法.學(xué)有所用:在等腰 三角形 ABC中,AB=AC,其一腰上的高為h,M 是底邊BC上的任意一點(diǎn),M 到腰AB、AC 的距離分別為 h1、h2 .
(1)請(qǐng)你結(jié)合圖形來(lái)證明: h1+h2=h;
(2)當(dāng)點(diǎn)M在BC延長(zhǎng)線上時(shí),h1、h2、h 之間又有什么樣的結(jié)論.請(qǐng)你畫出圖形,并直
接寫出結(jié)論不必證明;
(3)利用以上結(jié)論解答,如圖在平面直角坐標(biāo)系中有兩條直線l1:y=x+3,l2:y=-3x+3
若 l2上的一點(diǎn)M 到l1的距離是,求點(diǎn) M 的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com