【題目】6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好分割為兩個(gè)長方形,面積分別為S1S2.已知小長方形紙片的長為a,寬為b,且ab.當(dāng)AB長度不變而BC變長時(shí),將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內(nèi),S1S2的差總保持不變,求a,b滿足的關(guān)系式.

1)為解決上述問題,如圖3,小明設(shè)EF=x,則可以表示出S1=_________,S2=_________

2)求a,b滿足的關(guān)系式,寫出推導(dǎo)過程.

【答案】(1) ;(2).

【解析】試題分析:(1)根據(jù)題意得出面積即可;

2)表示出左上角與右下角部分的面積,求出它們的差,根據(jù)它們的差與BC無關(guān)即可求出ab的關(guān)系式.

試題解析:解:(1S1=ax+a),S2=4bx+2b),故答案為:ax+a),4bx+2b).

2)由(1)知:

S1=ax+a),S2=4bx+2b),S1S2

=ax+a﹣4bx+2b

=ax+a2﹣4bx﹣8b2

=a﹣4bx+a2﹣8b2S1S2的差總保持不變,a﹣4b=0,a=4b

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016廣東省梅州市第22題)

如圖,平行四邊形ABCD中,BDAD,A=45°,E、F分別是AB、CD上的點(diǎn),且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EFAB,延長EF交AD的延長線于G,當(dāng)FG=1時(shí),求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|-7+3|=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若―3xayzb與6x3ycz2是同類項(xiàng),則a、b、c的值分別是( ).

A. a=1 b=2 c=3 B. a=3 b=1 c=2

C. a=3 b=2 c=1 D. 以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016湖南省岳陽市第18題)已知:如圖,在矩形ABCD中,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,且BE=CF,EFDF,求證:BF=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)某電腦經(jīng)銷商計(jì)劃同時(shí)購進(jìn)一批電腦機(jī)箱和液晶顯示器,若購進(jìn)電腦機(jī)箱10 臺(tái)和

液晶顯示器8臺(tái),共需要資金7000 元;若購進(jìn)電腦機(jī)箱2臺(tái)和液晶顯示器5臺(tái),共需要資金

4120元.

(1)每合電腦機(jī)箱、液晶顯示器的進(jìn)價(jià)各是多少元?

(2)該經(jīng)銷商計(jì)劃購進(jìn)這兩種商品共50臺(tái),而可用于購買這兩種商品的資金不超過22240元. 根據(jù)市場行情,銷售電腦機(jī)箱、液晶顯示器一臺(tái)分別可獲利10元和160元. 該經(jīng)銷商希望銷售完這兩種商品,所獲利潤不少于4100元. 試問:該經(jīng)銷商有哪幾種進(jìn)貨方案?哪種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形兩邊的長是3和4,第三邊的長是方程x2﹣12x+35=0的根,則該三角形的周長為(
A.12
B.14
C.12或14
D.以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,如果∠B=100°,那么∠A、∠D的值分別是( )
A.∠A=80°,∠D=100°
B.∠A=100°,∠D=80°
C.∠B=80°,∠D=80°
D.∠A=100°,∠D=100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形的一組對(duì)角度數(shù)之和為200°,則平行四邊形中較大的角為.

查看答案和解析>>

同步練習(xí)冊(cè)答案