(2013•益陽)如圖1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分線BE交AC于E.
(1)求證:AE=BC;
(2)如圖(2),過點E作EF∥BC交AB于F,將△AEF繞點A逆時針旋轉(zhuǎn)角α(0°<α<144°)得到△AE′F′,連結(jié)CE′,BF′,求證:CE′=BF′;
(3)在(2)的旋轉(zhuǎn)過程中是否存在CE′∥AB?若存在,求出相應(yīng)的旋轉(zhuǎn)角α;若不存在,請說明理由.
分析:(1)根據(jù)等腰三角形的性質(zhì)以及角平分線的性質(zhì)得出對應(yīng)角之間的關(guān)系進而得出答案;
(2)由旋轉(zhuǎn)的性質(zhì)可知:∠E′AC=∠F′AB,AE′=AF′,根據(jù)全等三角形證明方法得出即可;
(3)分別根據(jù)①當(dāng)點E的像E′與點M重合時,則四邊形ABCM為等腰梯形,②當(dāng)點E的像E′與點N重合時,求出α即可.
解答:(1)證明:∵AB=BC,∠A=36°,
∴∠ABC=∠C=72°,
又∵BE平分∠ABC,
∴∠ABE=∠CBE=36°,
∴∠BEC=180°-∠C-∠CBE=72°,
∴∠ABE=∠A,∠BEC=∠C,
∴AE=BE,BE=BC,
∴AE=BC.

(2)證明:∵AC=AB且EF∥BC,
∴AE=AF;
由旋轉(zhuǎn)的性質(zhì)可知:∠E′AC=∠F′AB,AE′=AF′,
∵在△CAE′和△BAF′中
AC=AB
∠E′AC=∠F′AB
AE′=AF′

∴△CAE′≌△BAF′,
∴CE′=BF′.

(3)存在CE′∥AB,
理由:由(1)可知AE=BC,所以,在△AEF繞點A逆時針旋轉(zhuǎn)過程中,E點經(jīng)過的路徑(圓。┡c過點C且與AB平行的直線l交于M、N兩點,
如圖:①當(dāng)點E的像E′與點M重合時,則四邊形ABCM為等腰梯形,
∴∠BAM=∠ABC=72°,又∠BAC=36°,
∴α=∠CAM=36°.                                   
②當(dāng)點E的像E′與點N重合時,
由AB∥l得,∠AMN=∠BAM=72°,
∵AM=AN,
∴∠ANM=∠AMN=72°,
∴∠MAN=180°-2×72°=36°,
∴α=∠CAN=∠CAM+∠MAN=72°.
所以,當(dāng)旋轉(zhuǎn)角為36°或72°時,CE′∥AB.
點評:此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等腰三角形的性質(zhì)和等腰梯形的性質(zhì)等知識,根據(jù)數(shù)形結(jié)合熟練掌握相關(guān)定理是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•益陽)如圖,在平行四邊形ABCD中,下列結(jié)論中錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•益陽)如圖,若AB是⊙O的直徑,AB=10cm,∠CAB=30°,則BC=
5
5
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•益陽)如圖,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求證:△ABD∽△CBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•益陽)如圖,益陽市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張在小道上測得如下數(shù)據(jù):AB=80.0米,∠PAB=38.5°,∠PBA=26.5.請幫助小張求出小橋PD的長并確定小橋在小道上的位置.(以A,B為參照點,結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)

查看答案和解析>>

同步練習(xí)冊答案