【題目】中,,點(diǎn)在邊上運(yùn)動,連接,以為一邊且在的右側(cè)作正方形.

1)如果,如圖①,試判斷線段之間的位置關(guān)系,并證明你的結(jié)論;

2)如果,如圖②,(1)中結(jié)論是否成立,說明理由.

3)如果,如圖③,且正方形的邊與線段交于點(diǎn),設(shè),,,請直接寫出線段的長.(用含的式子表示)

【答案】1;證明見解析; 2)成立;理由見解析;(3.

【解析】

1)先證明,得到,再根據(jù)角度轉(zhuǎn)換得到∠BCF=90°即可;

2)過點(diǎn)于點(diǎn),可得,再證明,得,即可證明;

3)過點(diǎn)的延長線于點(diǎn),可求出,則,根據(jù)得出相似比,即可表示出CP.

1;

證明:∵,

,

由正方形,

,

,

中,

,

,

,

,

;

2時(shí),的結(jié)論成立;

證明:如圖2,過點(diǎn)于點(diǎn)

,

,

,

中,

,

,

;

3)過點(diǎn)的延長線于點(diǎn),

,

△AQC為等腰直角三角形,

,

DC=x

,

∵四邊形ADEF為正方形,

∴∠ADE=90°,

∴∠PDC+∠ADQ=90°,

∠ADQ+∠QAD=90°,

∠PDC=∠QAD,

,

,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦運(yùn)動會,在1500米的項(xiàng)目中,參賽選手在200米的環(huán)形跑道上進(jìn)行,如圖記錄了跑的最快的一位選手與最慢的一位選手的跑步過程(最快的選手跑完了全程),其中x表示最快的選手的跑步時(shí)間,y表示這兩位選手之間的距離,現(xiàn)有以下4種說法,正確的有( 。

最快的選手到達(dá)終點(diǎn)時(shí),最慢的選手還有15米未跑;

跑的最快的選手用時(shí)4'46″;

出發(fā)后最快的選手與最慢的選手相遇了兩次;

出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時(shí)長.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司向市場投放一款研發(fā)成本為10千萬元新產(chǎn)品,經(jīng)調(diào)研發(fā)現(xiàn),其銷售總利潤y(千萬元)與銷售時(shí)間x(月)成二次函數(shù),其函數(shù)關(guān)系式為y=﹣x2+20xx為整數(shù)).求:

1)投入市場幾個月后累計(jì)銷售利潤y開始下降;

2)累計(jì)利潤達(dá)到8.1億時(shí),最快要幾個月(利潤=銷售總利潤﹣研發(fā)成本);

3)當(dāng)月銷售利潤小于等于3千萬時(shí)應(yīng)考慮推出替代產(chǎn)品,問該公司何時(shí)推出替代產(chǎn)品最好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),兩點(diǎn),與y軸交于點(diǎn)C,

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)過點(diǎn)A,垂足為M,求證:四邊形ADBM為正方形;

(3)點(diǎn)P為拋物線在直線BC下方圖形上的一動點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);

(4)若點(diǎn)Q為線段OC上的一動點(diǎn),問:是否存在最小值?若存在,求岀這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點(diǎn)坐標(biāo)為(﹣10),其部分圖象如圖所示,下列結(jié)論:

①4acb2

方程 的兩個根是x1=1,x2=3;

③3a+c0

當(dāng)y0時(shí),x的取值范圍是﹣1≤x3

當(dāng)x0時(shí),yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家以AB兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙兩種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含1.5千克A原料、1.5千克B原料;乙產(chǎn)品每袋含2千克A原料、1千克B原料.甲、乙兩種產(chǎn)品每袋的成本價(jià)分別為袋中兩種原料的成本價(jià)之和.若甲產(chǎn)品每袋售價(jià)72元,則利潤率為20%.某節(jié)慶日,廠家準(zhǔn)備生產(chǎn)若干袋甲產(chǎn)品和乙產(chǎn)品,甲產(chǎn)品和乙產(chǎn)品的數(shù)量和不超過100袋,會計(jì)在核算成本的時(shí)候把A原料和B原料的單價(jià)看反了,后面發(fā)現(xiàn)如果不看反,那么實(shí)際成本比核算時(shí)的成本少500元,那么廠家在生產(chǎn)甲乙兩種產(chǎn)品時(shí)實(shí)際成本最多為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知為反比例函數(shù)圖象上的兩點(diǎn),動點(diǎn)軸正半軸上運(yùn)動,當(dāng)線段與線段之差達(dá)到最大時(shí),點(diǎn)的坐標(biāo)是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準(zhǔn)備購進(jìn)兩種商品,種商品每件的進(jìn)價(jià)比種商品每件的進(jìn)價(jià)多元,用元購進(jìn)種商品和用元購進(jìn)種商品的數(shù)量相同.商店將種商品每件的售價(jià)定為元,種商品每件的售價(jià)定為元.

1種商品每件的進(jìn)價(jià)和種商品每件的進(jìn)價(jià)各是多少元?

2)商店計(jì)劃用不超過元的資金購進(jìn)兩種商品共件,其中種商品的數(shù)量不低于種商品數(shù)上的一半,該商店有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,以AC為直徑的⊙OAB邊交于點(diǎn)D,過點(diǎn)D作⊙O的切線.交BC于點(diǎn)E.

(1)求證:BE=EC

(2)填空:①若∠B=30°,AC=2,則DB=   

②當(dāng)∠B=   度時(shí),以O,D,E,C為頂點(diǎn)的四邊形是正方形.

查看答案和解析>>

同步練習(xí)冊答案