【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不能得出BEDF的是( 。

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

【答案】B

【解析】試題解析:∵四邊形ABCD是平行四邊形,

ADBC,,

A、AE=CF,

,

∴四邊形BFDE是平行四邊形,

BEDF,故本選項(xiàng)能判定BEDF;

B、,

∴四邊形BFDE是平行四邊形或等腰梯形,

∴故本選項(xiàng)不能判定BEDF

C、ADBC

∴四邊形BFDE是平行四邊形,

BEDF,故本選項(xiàng)能判定BEDF;

D、ADBC,

∴四邊形BFDE是平行四邊形,

BEDF,故本選項(xiàng)能判定BEDF

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,BC=AC,∠C=90°,直角頂點(diǎn)Cx軸上,一銳角頂點(diǎn)By軸上.

1)如圖AD于垂直x軸,垂足為點(diǎn)D.點(diǎn)C坐標(biāo)是(﹣1,0),點(diǎn)A的坐標(biāo)是(﹣3,1),求點(diǎn)B的坐標(biāo).

2)如圖,直角邊BC在兩坐標(biāo)軸上滑動(dòng),若y軸恰好平分∠ABC,ACy軸交于點(diǎn)D,過點(diǎn)AAE⊥y軸于E,請猜想BDAE有怎樣的數(shù)量關(guān)系,并證明你的猜想.

3)如圖,直角邊BC在兩坐標(biāo)軸上滑動(dòng),使點(diǎn)A在第四象限內(nèi),過A點(diǎn)作AF⊥y軸于F,在滑動(dòng)的過程中,請猜想OCAF,OB之間有怎樣的關(guān)系(直接寫出結(jié)論,不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣2x2+(m+9)x﹣6的對稱軸是x=2.
(1)求拋物線表達(dá)式和頂點(diǎn)坐標(biāo);
(2)將該拋物線向右平移1個(gè)單位,平移后的拋物線與原拋物線相交于點(diǎn)A,求點(diǎn)A的坐標(biāo);
(3)拋物線y=﹣2x2+(m+9)x﹣6與y軸交于點(diǎn)C,點(diǎn)A關(guān)于平移后拋物線的對稱軸的對稱點(diǎn)為點(diǎn)B,兩條拋物線在點(diǎn)A、C和點(diǎn)A、B之間的部分(包含點(diǎn)A、B、C) 記為圖象M.將直線y=2x﹣2向下平移b(b>0)個(gè)單位,在平移過程中直線與圖象M始終有兩個(gè)公共點(diǎn),請你寫出b的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過圓外一點(diǎn)作圓的切線。
已知:P為⊙O外一點(diǎn)。
求作:經(jīng)過點(diǎn)P的⊙O的切線

小敏的作法如下:
如圖:
①連接OP,作線段OP的垂直平分線MN交OP于C
②以點(diǎn)C為圓心,CO的長為半徑作圓,交⊙O 于A,B兩點(diǎn)
③作直線PA,PB所以直線PA,PB就是所求的切線

老師認(rèn)為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,EF分別在邊AB、CD上,EFBCAEBE=12,對角線ACEFG,若BC=10cmAD=6cm,則EF的長等于______ cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】石頭剪子布,又稱“猜丁殼”,是一種起源于中國流傳多年的猜拳游戲.游戲時(shí)的各方每次用一只手做“石頭”、“剪刀”、“布”三種手勢中的一種,規(guī)定“石頭”勝“剪刀”、“剪刀”勝“布”、“布”勝“石頭”.兩人游戲時(shí),若出現(xiàn)相同手勢,則不分勝負(fù)游戲繼續(xù),直到分出勝負(fù),游戲結(jié)束.三人游戲時(shí),若三種手勢都相同或都不相同,則不分勝負(fù)游戲繼續(xù);若出現(xiàn)兩人手勢相同,則視為一種手勢與第三人所出手勢進(jìn)行對決,此時(shí),參照兩人游戲規(guī)則.例如甲、乙二人同時(shí)出石頭,丙出剪刀,則甲、乙獲勝.假定甲、乙、丙三人每次都是隨機(jī)地做這三種手勢,那么:
(1)請你用畫樹狀圖或列表的方式,求出一次游戲中甲、乙兩人出第一次手勢時(shí),不分勝負(fù)的概率;
(2)請直接寫出一次游戲中甲、乙、丙三人出第一次手勢時(shí),不分勝負(fù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為應(yīng)對越來越嚴(yán)重的霧霾天氣,孔明同學(xué)所在班級(jí)的家長委員會(huì),準(zhǔn)備為該班集資捐贈(zèng)一臺(tái)大型的空氣凈化機(jī),現(xiàn)知道某商場將該型號(hào)的空氣凈化機(jī)按標(biāo)價(jià)的八折出售,每臺(tái)空氣凈化機(jī)仍可獲利,已知該型號(hào)客氣凈化機(jī)的進(jìn)價(jià)為元.

求該空氣凈化機(jī)的標(biāo)價(jià).

若該班有名學(xué)生,則該班每位學(xué)生家長應(yīng)平均捐助多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)寬為2cm的刻度尺在圓形光盤上移動(dòng),當(dāng)刻度尺的一邊與光盤相切時(shí),另一邊與光盤邊緣兩個(gè)交點(diǎn)處的讀數(shù)恰好是“2”和“10”(單位:cm),求該光盤的直徑是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,AB=BC=2,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到△MNC,連接BM,那么BM的長是

查看答案和解析>>

同步練習(xí)冊答案