【題目】如圖,AB是⊙O的直徑,D、D為⊙O上兩點,CFAB于點FCEADAD的延長線于點E,且CE=CF.

1)求證:CE是⊙O的切線;

2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.

【答案】1)證明見解析;(2

【解析】

1)連接OC,AC,可先證明AC平分∠BAE,結(jié)合圓的性質(zhì)可證明OCAE,可得∠OCB90°,可證得結(jié)論;

2)可先證得四邊形AOCD為平行四邊形,再證明△OCB為等邊三角形,可求得CF、AB,利用梯形的面積公式可求得答案.

1)證明:連接OC,AC

CFAB,CEAD,且CECF

∴∠CAE=∠CAB

OCOA,

∴∠CAB=∠OCA

∴∠CAE=∠OCA

OCAE

∴∠OCE+∠AEC180°,

∵∠AEC90°,

∴∠OCE90°即OCCE,

OC是⊙O的半徑,點C為半徑外端,

CE是⊙O的切線.

2)解:∵ADCD,

∴∠DAC=∠DCA=∠CAB,

DCAB,

∵∠CAE=∠OCA

OCAD,

∴四邊形AOCD是平行四邊形,

OCADa,AB2a

∵∠CAE=∠CAB,

CDCBa,

CBOCOB

∴△OCB是等邊三角形,

RtCFB中,CF ,

S四邊形ABCD DCABCF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:

問題情境:如圖1,四邊形ABCD中,AD∥BC,點EDC邊的中點,連結(jié)AE并延長交BC的延長線于點F.求證:S四邊形ABCDSABF.(S表示面積)

問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點P.過點P任意作一條直線MN,分別交射線OAOB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應(yīng)用:如圖3,若在道路OAOB之間有一村莊Q發(fā)生疫情,防疫部分計劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB66∠POB30,OP4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66≈0.91,tan66≈2.25≈1.73

拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A、BC、P的坐標(biāo)分別為(6,0)、(6,3)、、(4,2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,邊的中線,,連結(jié),點在射線上(與不重合)

1)如果

①如圖1,   

②如圖2,點在線段上,連結(jié),將線段繞點逆時針旋轉(zhuǎn),得到線段,連結(jié),補全圖2猜想、之間的數(shù)量關(guān)系,并證明你的結(jié)論;

2)如圖3,若點在線段 的延長線上,且,連結(jié),將線段繞點逆時針旋轉(zhuǎn)得到線段,連結(jié),請直接寫出、、三者的數(shù)量關(guān)系(不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛轎車從甲城駛往乙城,同時一輛卡車從乙城駛往甲城,兩車沿相同路線勻速行駛,轎車到達乙城停留一段時間后按原路返回:卡車到達甲城比轎車返回甲城早0.5小時,兩車到達甲城后均停止行駛,兩車距離甲城的路程ykm)與出發(fā)時間th)之間的關(guān)系如圖1所示,請結(jié)合圖象提供的信息解答下列問題:

1)求轎車和卡車的速度;

2)求CD段的函數(shù)解析式;

3)若設(shè)在行駛過程中,轎車與卡車之間的距離為Skm)行駛的時間為th),請你在圖2中畫出Skm)關(guān)于th)函數(shù)的圖象,并標(biāo)出每段函數(shù)圖象端點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課題學(xué)習(xí):設(shè)計概率模擬實驗.

在學(xué)習(xí)概率時,老師說:擲一枚質(zhì)地均勻的硬幣,大量重復(fù)實驗后,正面朝上的概率約是.”小海、小東、小英分別設(shè)計了下列三個模擬實驗:

小海找來一個啤酒瓶蓋(如圖1)進行大量重復(fù)拋擲,然后計算瓶蓋口朝上的次數(shù)與總次數(shù)的比值;

小東用硬紙片做了一個圓形轉(zhuǎn)盤,轉(zhuǎn)盤上分成8個大小一樣的扇形區(qū)域,并依次標(biāo)上18個數(shù)字(如圖2),轉(zhuǎn)動轉(zhuǎn)盤10次,然后計算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;

小英在一個不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機同時摸出兩枚棋子,并大量重復(fù)上述實驗,然后計算摸出的兩枚棋子顏色不同的次數(shù)與總次數(shù)的比值.

根據(jù)以上材料回答問題:

小海、小東、小英三人中,哪一位同學(xué)的實驗設(shè)計比較合理,并簡要說出其他兩位同學(xué)實驗的不足之處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位有職工200人,其中青年職工(2035歲),中年職工(3550歲),老年職工(50歲及以上)所占比例如扇形統(tǒng)計圖所示.

為了解該單位職工的健康情況,小張、小王和小李各自對單位職工進行了抽樣調(diào)查,將收集的數(shù)據(jù)進行了整理,繪制的統(tǒng)計表分別為表1、表2和表3

1:小張抽樣調(diào)查單位3名職工的健康指數(shù)

年齡

26

42

57

健康指數(shù)

97

79

72

2:小王抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

23

25

26

32

33

37

39

42

48

52

健康指數(shù)

93

89

90

83

79

75

80

69

68

60

3:小李抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

22

29

31

36

39

40

43

46

51

55

健康指數(shù)

94

90

88

85

82

78

72

76

62

60

根據(jù)上述材料回答問題:

小張、小王和小李三人中,誰的抽樣調(diào)查的數(shù)據(jù)能夠較好地反映出該單位職工健康情況,并簡要說明其他兩位同學(xué)抽樣調(diào)查的不足之處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,直線BMAB于點B,點CO上,分別連接BCAC,且AC的延長線交BM于點DCFO的切線交BM于點F

(1)求證:CFDF;

(2)連接OF,若AB=10,BC=6,求線段OF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)緯文教用品商店欲購進A、B兩種筆記本,用160元購進的A種筆記本與用240元購進的B種筆記本的數(shù)量相同,每本B種筆記本的進價比每本A種筆記本的進價貴10元.

1)求A、B兩種筆記本每本的進價分別為多少元?

2)若該商店A種筆記本每本售價24元,B種筆記本每本售價35元,準(zhǔn)備購進AB兩種筆記本共100本,且這兩種筆記本全部售出后總獲利高于468元,則最多購進A種筆記本多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,點E,F(xiàn)分別在邊BCCD上,BE=CF=1,小球P從點E出發(fā)沿直線向點F運動,完成第1次與邊的碰撞,每當(dāng)碰到正方形的邊時反彈,反彈時反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經(jīng)過的路程為__

查看答案和解析>>

同步練習(xí)冊答案