【題目】在△ABC中,∠ACB=90°,點(diǎn)E是斜邊AB的中點(diǎn),AB=10,BC=8,點(diǎn)P在CE的延長線上,過點(diǎn)P作PQ⊥CB,交CB的延長線于點(diǎn)Q,設(shè)EP=x
(1)如圖1,求證:△ABC∽△PCQ;
(2)如圖2,連接PB,當(dāng)PB平分∠CPQ時(shí),試用含x的代數(shù)式表示△PBE的面積;
(3)如圖3,過點(diǎn)B作BF⊥AB交PQ于點(diǎn)F.若∠BEF=∠A,試求x的值.
【答案】(1)證明見解析;(2);(3)x=10.
【解析】
(1)易證明到∠PQC=∠ACB.即可求證:△ABC∽△PCQ
(2)過點(diǎn)B作BH⊥PC于H,可證BH=BQ,此時(shí)根據(jù)(1)中:△ABC∽△PCQ,可解得BQ=BH=,即可求解.
(3)已知BC=8,AB=10,通過證明△ABC∽△BFQ,求出BF,再證△ACB∽△EBF,可得,即可求出x的值.
解:(1)∵點(diǎn)E是斜邊AB的中點(diǎn),
∴CE=,
∴∠PCQ=∠ABC
∵PQ⊥CB
∴∠PQC=90°
又∵∠ACB=90°,
∴∠PQC=∠ACB
∴△ABC∽△PCQ
(2)過點(diǎn)B作BH⊥PC于H,
∵BP平分∠CPQ,BH⊥PC,BQ⊥PQ
∴BH=BQ
由(1)知,△ABC∽△PCQ,
∴,即AB×CQ=BC×PC
而AB=10,BC=8,CQ=BC+BQ=8+BQ,PC=CE+EP=5+x
∴10×(8+BQ)=8×(5+x),解得BQ=,
∴BH=
(3)∵∠FBQ+∠ABC=90°,∠A+∠ABC=90°
∴∠A=∠FBQ
又∵∠ACB=∠EBF=90°,
∴△ABC∽△BFQ
∴,即AB×BQ=AC×BF
又由(2)知BQ=
∴=6×BF,解得BF=
∵∠FEB=∠A,∠EBF=∠ACB=90°
∴△ACB∽△EBF
∴,即
解得x=10
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線,過點(diǎn)和點(diǎn),與y軸交于點(diǎn)C,連接AC交x軸于點(diǎn)D,連接OA,OB
求拋物線的函數(shù)表達(dá)式;
求點(diǎn)D的坐標(biāo);
的大小是______;
將繞點(diǎn)O旋轉(zhuǎn),旋轉(zhuǎn)后點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn),點(diǎn)D的對應(yīng)點(diǎn)是點(diǎn),直線與直線交于點(diǎn)M,在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)M與點(diǎn)重合時(shí),請直接寫出點(diǎn)M到AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在邊BC上,∠CAD=∠B,點(diǎn)E在邊AB上,聯(lián)結(jié)CE交AD于點(diǎn)H,點(diǎn)F在CE上,且滿足CFCE=CDBC.
(1)求證:△ACF∽△ECA;
(2)當(dāng)CE平分∠ACB時(shí),求證:=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,是邊的中點(diǎn),是邊上一動(dòng)點(diǎn),與相交于點(diǎn).
(1)如果,,且為的中點(diǎn),求線段的長;
(2)聯(lián)結(jié),如果,且,,求的值;
(3)聯(lián)結(jié),如果,且,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點(diǎn)在地面A處測得點(diǎn)M的仰角為、點(diǎn)N的仰角為,在B處測得點(diǎn)M的仰角為,米,且A、B、P三點(diǎn)在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.
參考數(shù)據(jù):,,,,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線l1:y與x軸交于點(diǎn)B1,以OB1為邊長作等邊△A1OB1,過點(diǎn)A1,作A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長作等邊△A2A1B2,過點(diǎn)A2作A1B2平行于x軸,交直線l于點(diǎn)B3,以A2B3,為邊長作等邊△A3A2B3…,則等邊△A2019A2018B2019的邊長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于點(diǎn)和點(diǎn),交軸于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo);
(3)如圖,設(shè)點(diǎn)是線段上的一動(dòng)點(diǎn),作軸,交拋物線于點(diǎn),求線段長度的最大值,并求出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時(shí),小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.下列敘述正確的是( 。
A. 小球的飛行高度不能達(dá)到15m
B. 小球的飛行高度可以達(dá)到25m
C. 小球從飛出到落地要用時(shí)4s
D. 小球飛出1s時(shí)的飛行高度為10m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com