【題目】在△ABC中,∠ACB=90°,點(diǎn)E是斜邊AB的中點(diǎn),AB=10BC=8,點(diǎn)PCE的延長線上,過點(diǎn)PPQCB,交CB的延長線于點(diǎn)Q,設(shè)EP=x

1)如圖1,求證:△ABC∽△PCQ

2)如圖2,連接PB,當(dāng)PB平分∠CPQ時(shí),試用含x的代數(shù)式表示△PBE的面積;

3)如圖3,過點(diǎn)BBFABPQ于點(diǎn)F.若∠BEF=A,試求x的值.

【答案】1)證明見解析;(2;(3x=10

【解析】

1)易證明到∠PQC=∠ACB.即可求證:△ABC∽△PCQ

2)過點(diǎn)BBH⊥PCH,可證BH=BQ,此時(shí)根據(jù)(1)中:△ABC∽△PCQ,可解得BQ=BH=,即可求解.

3)已知BC=8,AB=10,通過證明△ABC∽△BFQ,求出BF,再證△ACB∽△EBF,可得,即可求出x的值.

解:(1點(diǎn)E是斜邊AB的中點(diǎn),

∴CE=

∴∠PCQ=∠ABC

∵PQ⊥CB

∴∠PQC=90°

∵∠ACB=90°

∴∠PQC=∠ACB

∴△ABC∽△PCQ

2)過點(diǎn)BBH⊥PCH,

∵BP平分∠CPQ,BH⊥PCBQ⊥PQ

∴BH=BQ

由(1)知,△ABC∽△PCQ,

,即AB×CQ=BC×PC

AB=10,BC=8CQ=BC+BQ=8+BQ,PC=CE+EP=5+x

∴10×8+BQ=8×5+x),解得BQ=,

∴BH=

3∵∠FBQ+∠ABC=90°,∠A+∠ABC=90°

∴∠A=∠FBQ

∵∠ACB=∠EBF=90°

∴△ABC∽△BFQ

,即AB×BQ=AC×BF

又由(2)知BQ=

=6×BF,解得BF=

∵∠FEB=∠A,∠EBF=∠ACB=90°

∴△ACB∽△EBF

,即

解得x=10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線,過點(diǎn)和點(diǎn),與y軸交于點(diǎn)C,連接ACx軸于點(diǎn)D,連接OA,OB

求拋物線的函數(shù)表達(dá)式;

求點(diǎn)D的坐標(biāo);

的大小是______;

繞點(diǎn)O旋轉(zhuǎn),旋轉(zhuǎn)后點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn),點(diǎn)D的對應(yīng)點(diǎn)是點(diǎn),直線與直線交于點(diǎn)M,在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)M與點(diǎn)重合時(shí),請直接寫出點(diǎn)MAB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在邊BC上,∠CAD=∠B,點(diǎn)E在邊AB上,聯(lián)結(jié)CEAD于點(diǎn)H,點(diǎn)FCE上,且滿足CFCECDBC

(1)求證:△ACF∽△ECA;

(2)當(dāng)CE平分∠ACB時(shí),求證:=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,,是邊的中點(diǎn),是邊上一動(dòng)點(diǎn),相交于點(diǎn)

1)如果,,且的中點(diǎn),求線段的長;

2)聯(lián)結(jié),如果,且,,求的值;

3)聯(lián)結(jié),如果,且,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點(diǎn)在地面A處測得點(diǎn)M的仰角為、點(diǎn)N的仰角為,在B處測得點(diǎn)M的仰角為,米,且A、B、P三點(diǎn)在一直線上請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.

參考數(shù)據(jù):,,,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線l1yx軸交于點(diǎn)B1,以OB1為邊長作等邊△A1OB1,過點(diǎn)A1,作A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長作等邊△A2A1B2,過點(diǎn)A2A1B2平行于x軸,交直線l于點(diǎn)B3,以A2B3,為邊長作等邊△A3A2B3…,則等邊△A2019A2018B2019的邊長是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于點(diǎn)和點(diǎn),交軸于點(diǎn).

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo);

3)如圖,設(shè)點(diǎn)是線段上的一動(dòng)點(diǎn),作軸,交拋物線于點(diǎn),求線段長度的最大值,并求出面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時(shí),小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系h20t5t2.下列敘述正確的是( 。

A. 小球的飛行高度不能達(dá)到15m

B. 小球的飛行高度可以達(dá)到25m

C. 小球從飛出到落地要用時(shí)4s

D. 小球飛出1s時(shí)的飛行高度為10m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)的圖象可能是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案