【題目】已知線段AB,點(diǎn)C、點(diǎn)D在直線AB上,并且CD=8,ACCB=12BDAB=23,則AB=______

【答案】6

【解析】

要分三種情況進(jìn)行討論:①當(dāng)C在線段AB上時(shí),點(diǎn)D在線段AB的延長(zhǎng)線上;②當(dāng)點(diǎn)C在線段AB的反向延長(zhǎng)線時(shí),點(diǎn)DAB上時(shí);③點(diǎn)CD在線段AB上時(shí),C、D兩點(diǎn)重合,不成立.

解:分三種情況進(jìn)行討論:

①當(dāng)C在線段AB上時(shí),點(diǎn)D在線段AB的延長(zhǎng)線上,

ACCB=12,

BC=AB,

BDAB=23

BD=AB,

CD=BC+BD=

AB=6;

②當(dāng)點(diǎn)C在線段AB的反向延長(zhǎng)線時(shí),

BDAB=23,

AB=3AD,

ACCB=12,

AC=AB

CD=AC+AD=4AD=8,

AD=2

AB=6;

③點(diǎn)C、D在線段AB上時(shí),C、D兩點(diǎn)重合,不成立.

AB=6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面文字,根據(jù)所給信息解答下面問(wèn)題:把幾個(gè)數(shù)用大括號(hào)括起來(lái),中間用逗號(hào)隔開(kāi),如:{3,4};{3,68,18},其中大括號(hào)內(nèi)的數(shù)稱(chēng)其為集合的元素.如果一個(gè)集合滿(mǎn)足:只要其中有一個(gè)元素a,使得﹣2a+4也是這個(gè)集合的元素,這樣的集合稱(chēng)為條件集合.例如;{3,﹣2},因?yàn)椹?/span>2×3+4=﹣2,﹣2恰好是這個(gè)集合的元素所以呂{3,﹣2}是條件集合:例如;(﹣2,9,8,},因?yàn)椹?/span>2×(﹣2+48,8恰好是這個(gè)集合的元素,所以{298,}是條件集合.

1)集合{4,12}是否是條件集合?

2)集合{,﹣}是否是條件集合?

3)若集合{8n}{m}都是條件集合.求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列兩個(gè)等式: ,給出定義如下:

我們稱(chēng)使等式成立的一對(duì)有理數(shù) 共生有理數(shù)對(duì),記為(, ),如:數(shù)對(duì)(, ),(, ),都是共生有理數(shù)對(duì)

1判斷數(shù)對(duì)( ),( 是不是共生有理數(shù)對(duì)”,寫(xiě)出過(guò)程;

(2)若(, )是共生有理數(shù)對(duì),求的值;

(3)若( )是共生有理數(shù)對(duì),則( 共生有理數(shù)對(duì)(填不是);說(shuō)明理由;

(4)請(qǐng)?jiān)賹?xiě)出一對(duì)符合條件的 共生有理數(shù)對(duì) (注意:不能與題目中已有的共生有理數(shù)對(duì)重復(fù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠ABC=∠DCB,添加一個(gè)條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是( 。

A. A=∠D B. ABDC C. ACDB D. OBOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一塊等腰直角三角形零件(ABC,其中∠ACB90°),放置在一凹槽內(nèi),三個(gè)頂點(diǎn)A,BC分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED90°,測(cè)得AD5cm,BE7cm,求該三角形零件的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【操作發(fā)現(xiàn)】
如圖①,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.

(1)請(qǐng)按要求畫(huà)圖:將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,連接BB′;
(2)在(1)所畫(huà)圖形中,∠AB′B=
(3)【問(wèn)題解決】
如圖②,在等邊三角形ABC中,AC=7,點(diǎn)P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學(xué)通過(guò)觀察、分析、思考,對(duì)上述問(wèn)題形成了如下想法:
想法一:將△APC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;
想法二:將△APB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.

請(qǐng)參考小明同學(xué)的想法,完成該問(wèn)題的解答過(guò)程.(一種方法即可)
(4)【靈活運(yùn)用】
如圖③,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數(shù)),求BD的長(zhǎng)(用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣ x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接PQ.

(1)填空:b= , c=;
(2)在點(diǎn)P,Q運(yùn)動(dòng)過(guò)程中,△APQ可能是直角三角形嗎?請(qǐng)說(shuō)明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點(diǎn)M,使△PQM是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)求出運(yùn)動(dòng)時(shí)間t;若不存在,請(qǐng)說(shuō)明理由;
(4)如圖②,點(diǎn)N的坐標(biāo)為(﹣ ,0),線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對(duì)稱(chēng)點(diǎn)Q′恰好落在線段BC上時(shí),請(qǐng)直接寫(xiě)出點(diǎn)Q′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)至,甲、乙兩隊(duì)舉行了一年一度的賽龍舟比賽,兩隊(duì)在比賽時(shí)的路程與時(shí)間分鐘之間的函數(shù)關(guān)系圖象如圖所示,請(qǐng)你根據(jù)圖象,回答下列問(wèn)題:

這次龍舟賽的全程是______ 米,______ 隊(duì)先到達(dá)終點(diǎn);

求乙與甲相遇時(shí)乙的速度;

求出在乙隊(duì)與甲相遇之前,他們何時(shí)相距100米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AGF=ABC,1+2=180°.

(1)試判斷BFDE的位置關(guān)系,并說(shuō)明理由;

(2)BFAC,2=150°,求∠AFG的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案