【題目】從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中有一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線。
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線;
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù);
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長。
【答案】(1)詳見解析;(2)∠ACB=96°或114°;(3)CD=.
【解析】
試題分析:(1)由∠A=40°,∠B=60°可得∠ACB=80°,即△ABC不是等腰三角形,再判定△ACD是等腰三角形,△BCD∽△BAC,即可得CD為△ABC的完美分割線;(2)分AD=CD,AD=AC,AC=CD三種情況,根據(jù)這三種情況分別求出∠ACB的度數(shù),不合題意的舍去;(3)由△BCD∽△BAC可得,設(shè)BD=x,代入可得,由于x>0,即可知x=-1.再由△BCD∽△BAC,所以,解得CD=.
試題解析:(1)∵∠A=40°,∠B=60°,
∴∠ACB=80°,
∴△ABC不是等腰三角形,
又因CD為角平分線,
∴∠ACD=∠BCD=∠ABC=40°,
∴∠ACD=∠A=40°,
∴△ACD是等腰三角形,
∵∠BCD=∠A=40°,∠B=∠B,
∴△BCD∽△BAC,
∴CD為△ABC的完美分割線;
(2)當(dāng)AD=CD時(如圖①),∠ACD=∠A=48°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=96°;
當(dāng)AD=AC時(如圖②),∠ACD=∠ADC=,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∴∠ACB=∠ACD+∠BCD=114°;
當(dāng)AC=CD時(如圖③),∠ACD=∠A=48°,
∵△BDC∽△BCA,
∴∠BCD=∠A=48°,
∵∠ADC>∠BCD,矛盾,舍去.
∴∠ACB=96°或114°;
(3)由已知AC=AD=2,
∵△BCD∽△BAC,
∴,
設(shè)BD=x
∴
解得x=-1±,
∵x>0,
∴x=-1.
∵△BCD∽△BAC,
∴,
∴CD=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】能說明命題:“若a>b,則ac≥bc”是假命題的反例是( 。
A.c=﹣1B.c=0C.c=2D.c=m2(m為任意實數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上表示整數(shù)的點稱為整點,某數(shù)軸的單位長度是1厘米,若在這個數(shù)軸上隨意畫一條15厘米的線段AB,則AB蓋住的整數(shù)點的個數(shù)共有( )個
A. 13或14個 B. 14或15個 C. 15或16個 D. 16或17個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索規(guī)律,觀察下面算式,解答問題.
1+3 =4 =22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+7+9=25=52;
(1)請猜想1+3+5+7+9+…+19=
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=
(3)試計算:101 +103+…+197 +199.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖像交于點,點是線段的中點,點在反比例函數(shù)的圖像上,點在軸上,若,則點的橫坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)發(fā)現(xiàn)
如圖1,點A為線段BC外一動點,且BC=,AB=.
填空:當(dāng)點A位于__________________時,線段AC的長取得最大值,且最大值為_____________.
(用含,的式子表示)
(2)應(yīng)用
點A為線段BC外一動點,且BC=3,AB=1.如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值.
(3)拓展
如圖3,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2 , 0),點B的坐標(biāo)為(5 , 0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°.請直接寫出線段AM長的最大值及此時點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com