【題目】如圖1,在等腰直角三角形中,,點在邊上,連接,連接
(1)求證:
(2)點關(guān)于直線的對稱點為,連接
①補全圖形并證明
②利用備用圖進行畫圖、試驗、探究,找出當(dāng)三點恰好共線時點的位置,請直接寫出此時的度數(shù),并畫出相應(yīng)的圖形
【答案】(1)證明見解析;(2)①見解析;②畫圖見解析,.
【解析】
(1)先根據(jù)同角的余角相等推出∠BAD=∠CAE,再根據(jù)SAS證得△BAD≌△CAE,進而可得結(jié)論;
(2)①根據(jù)題意作圖即可補全圖形;利用軸對稱的性質(zhì)可得ME=AE,CM=CA,然后根據(jù)SSS可推出△CME≌△CAE,再利用全等三角形的性質(zhì)和(1)題的∠BAD=∠CAE即可證得結(jié)論;
②當(dāng)三點恰好共線時,設(shè)AC、DM交于點H,如圖3,由前面兩題的結(jié)論和等腰直角三角形的性質(zhì)可求得∠DCM=135°,然后在△AEH和△DCH中利用三角形的內(nèi)角和可得∠HAE=∠HDC,進而可得,接著在△CDM中利用三角形的內(nèi)角和定理求出∠CMD的度數(shù),再利用①的結(jié)論即得答案.
解:(1)證明:∵AE⊥AD,∴∠DAE=90°,∴∠CAE+∠DAC=90°,
∵∠BAC=90°,∴∠BAD+∠DAC=90°,
∴∠BAD=∠CAE,
又∵BA=CA,DA=EA,
∴△BAD≌△CAE(SAS),
∴;
(2)①補全圖形如圖2所示,∵點關(guān)于直線的對稱點為,∴ME=AE,CM=CA,
∵CE=CE,∴△CME≌△CAE(SSS),
∴,
∵∠BAD=∠CAE,
∴;
②當(dāng)三點恰好共線時,設(shè)AC、DM交于點H,如圖3,由(1)題知:,
∵△CME≌△CAE,∴,∴∠DCM=135°,
在△AEH和△DCH中,∵∠AEH=∠ACD=45°,∠AHE=∠DHC,∴∠HAE=∠HDC,
∵,∴,
∴,
∵,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知⊙O的直徑為10cm,點A為⊙O外一定點,OA=12cm,點P為⊙O上一動點,求PA的最大值和最小值.
(2)如圖:=,D、E分別是半徑OA和OB的中點.求證:CD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x-5,令x= ,1, ,2, ,3,,4,,5,可得函數(shù)圖象上的十個點.在這十個點中隨機取兩個點P(x1,y1),Q(x2,y2),則P,Q兩點在同一反比例函數(shù)圖象上的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】程老師制作了如圖1所示的學(xué)具,用來探究“邊邊角條件是否可確定三角形的形狀”問題,操作學(xué)具時,點Q在軌道槽AM上運動,點P既能在以A為圓心、以8為半徑的半圓軌道槽上運動,也能在軌道槽QN上運動,圖2是操作學(xué)具時,所對應(yīng)某個位置的圖形的示意圖.
有以下結(jié)論:
①當(dāng)∠PAQ=30°,PQ=6時,可得到形狀唯一確定的△PAQ
②當(dāng)∠PAQ=30°,PQ=9時,可得到形狀唯一確定的△PAQ
③當(dāng)∠PAQ=90°,PQ=10時,可得到形狀唯一確定的△PAQ
④當(dāng)∠PAQ=150°,PQ=12時,可得到形狀唯一確定的△PAQ
其中所有正確結(jié)論的序號是( )
A.②③B.③④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
如圖,在正方形ABCD中,點E是線段BG上的動點,AE⊥EF,EF交正方形外角∠DCG的平分線CF于點F.
(探究展示)
(1)如圖1,若點E是BC的中點,證明:∠BAE+∠EFC=∠DCF.
(2)如圖2,若點E是BC的上的任意一點(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,請予以證明;若不成立,請說明理由.
(拓展延伸)
(3)如圖3,若點E是BC延長線(C除外)上的任意一點,求證:AE=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一拋物線與x軸的交點是A(﹣2,0),B(1,0),且經(jīng)過點C(2,8).
(1)求該拋物線的解析式,并寫出頂點坐標(biāo).
(2)直接寫出當(dāng)y>8時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD,△AEC 都是等邊三角形
(1)求證:BE=DC .
(2)設(shè) BE、DC 交于 M,連 AM,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△AOB是直角三角形,∠AOB=90°,邊AB與y軸交于點C.
(1)若∠A=∠AOC,試說明:∠B=∠BOC;
(2)延長AB交x軸于點E,過O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度數(shù);
(3)如圖,OF平分∠AOM,∠BCO的平分線交FO的延長線于點P,∠A=40°,當(dāng)△ABO繞O點旋轉(zhuǎn)時(邊AB與y軸正半軸始終相交于點C),問∠P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠擬建一座平面圖形為矩形且面積為200平方米的三級污水處理池(平面圖如圖ABCD所示).由于地形限制,三級污水處理池的長、寬都不能超過16米.如果池的外圍墻建造單價為每米400元,中間兩條隔墻建造單價為每米300元,池底建造單價為每平方米80元.(池墻的厚度忽略不計)當(dāng)三級污水處理池的總造價為47200元時,求池長x.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com