為了考察冰川融化的狀況,一支科考隊在某冰川上設定一個以大本營O為圓心,半徑為4km 圓形考察區(qū)域,線段P1、P2是冰川的部分邊界線(不考慮其它邊界),當冰川融化時,邊界線沿著與其垂直的方向朝考察區(qū)域平行移動.若經(jīng)過n年,冰川的邊界線P1P2移動的距離為s(km),并且s與n(n為正整數(shù))的關系是.以O為原點,建立如圖所示的平面直角坐標系,其中P1、P2的坐標分別是(-4,9)、(-13,-3).
(1)求線段P1P2所在的直線對應的函數(shù)關系式;
(2)求冰川的邊界線移動到考察區(qū)域所需要的最短時間.
科目:初中數(shù)學 來源: 題型:
閱讀下面短文:如圖1,△ABC是直角三角形,∠C=90°,現(xiàn)將△ABC補成長方形,使△ABC的兩個頂點為長方形一邊的兩個端點,第三個頂點落在長方形這一邊的對邊上,那么符合要求的長方形可以畫出兩個:長方形ACBD和長方形AEFB(如圖2)。
解答問題:
(1)設圖2中長方形ACBD和長方形AEFB的面積分別為S1,S2,則S1 S2(填“>”、“=”或“<”)
(2)如圖3,△ABC是鈍角三角形,按短文中的要求把它補成長方形,那么符合要求的長方形可以畫出 個,利用圖3把它畫出來。
(3)如圖4,△ABC是銳角三角形且三邊滿足BC>AC>AB,按短文中的要求把它補成長方形,那么符合要求的長方形可以畫出 個,利用圖4把它畫出來。
(4)在(3)中所畫出的長方形中,哪一個的周長最小?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
定義:P、Q分別是兩條線段a和b上任意一點,線段PQ長度的最小值叫做線段與線段的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點.
(1)根據(jù)上述定義,當m=2,n=2時,如圖1,線段BC與線段OA的距離是_____,
當m=5,n=2時,如圖2,線段BC與線段OA的距離(即線段AB的長)為______
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關于m的函數(shù)解析式.
(3)當m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M.
①求出點M隨線段BC運動所圍成的封閉圖形的周長;
②點D的坐標為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點的三角形與△AOD相似,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,正六邊形的邊長為π,半徑是1的⊙O從與AB相切于點D的位置出發(fā),在正六邊形外部按順時針方向沿正六邊形滾動,又回到與AB相切于點D的位置,則⊙O自轉了【 】
A.4周 B.5周 C.6周 D.7周
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在矩形ABCD中,點P在邊CD上,且與C、D不重合,過點A作AP的垂線與CB的延長線相交于點Q,連接PQ,M為PQ中點.
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點P在邊CD上運動,設CP=x,BM2=y,求y與x的函數(shù)關系式,并求線段BM的最小值;
(3)若AD= a,AB=,DP=8,隨著a的大小的變化,點M的位置也在變化.當點M落在矩形ABCD內部時,求a的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知直線交坐標軸于兩點,以線段為邊向上作正方形
,過點的拋物線與直線另一個交點為.
(1)請直接寫出點的坐標;
(2)求拋物線的解析式;
(3)若正方形以每秒個單位長度的速度沿射線下滑,直至頂點落在軸上時停止.設正方形落在軸下方部分的面積為,求關于滑行時間的函數(shù)關系式,并寫出相應自變量的取值范圍;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,菱形ABCD的邊長為2,∠A=,動點P從點B出發(fā),沿B-C-D的路線向點D運動。設△ABP的面積為y (B、P兩點重合時,△ABP的面積可以看做0),點P運動的路程為x,則y與x之間函數(shù)關系的圖像大致為【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖所示,在直角坐標系中放置一個矩形ABCD,其中AB=2,AD=1,將矩形ABCD沿x軸的正方向無滑動的在x軸上滾動,當點A離開原點后第一次落在x軸上時,點A運動的路徑線與x軸圍成的面積為
.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,動點P從A點開始沿AD邊向D以3cm/s的速度運動,動點Q從點C開始沿CB邊向點B以1cm/s的速度運動,點P、Q分別從A、C同時出發(fā),設運動時間為t (s).
⑴當其中一點到達端點時,另一點也隨之停止運動.
①當t為何值時,以CD、PQ為兩邊,以梯形的底(AD或BC)的一部分(或全部)為第三邊能構成一個三角形;②當t為何值時,四邊形PQCD為等腰梯形.
⑵若點P從點A開始沿射線AD運動,當點Q到達點B時,點P也隨之停止運動.當t為何值時,以P、Q、C、D為頂點的四邊形是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com