【題目】如圖,在RtABC中,ABC=90°,以AB為直徑作O,點(diǎn)DO上一點(diǎn),且CD=CB,連接DO并延長交CB的延長線于點(diǎn)E,連接OC.

(1) 判斷直線CDO的位置關(guān)系,并說明理由;

(2) BE=,DE=3,求O的半徑及AC的長.

【答案】1DC⊙O的切線,理由見解析;(2)半徑為1,AC=

【解析】

1)欲證明CD是切線,只要證明ODCD,利用全等三角形的性質(zhì)即可證明;
2)設(shè)⊙O的半徑為r.在RtOBE中,根據(jù)OE2=EB2+OB2,可得,推出r=1,可得OE=2,即有,可推出,則利用勾股定理和含有30°的直角三角形的性質(zhì),可求得OC=2,再利用勾股定理求出即可解決問題;

1)證明:∵CB=CD,CO=COOB=OD,

∴△OCB≌△OCDSSS),

∴∠ODC=OBC=90°

ODDC,

DC是⊙O的切線;

2)解: 設(shè)⊙O的半徑為r

RtOBE中,∵OE2=EB2+OB2

,

OE=3-1=2

RtABC,

RtBCO,,

RtABC,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2-(m+1)x+my軸交于(0,-3)點(diǎn).

(1)求出m的值和拋物線與x軸的交點(diǎn);

(2)x取什么值時(shí),y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以即為直徑作BC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)E,連接DE

1)當(dāng)時(shí),

①若,求的度數(shù);

②求證;

2)當(dāng)時(shí),

①是含存在點(diǎn)P,使得是等腰三角形,若存在求出所有符合條件的CP的長;

②以D為端點(diǎn)過P作射線DH,作點(diǎn)O關(guān)于DE的對(duì)稱點(diǎn)Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,將以點(diǎn)C為中心順時(shí)針旋轉(zhuǎn),得到,連接BE、AD.下列說法錯(cuò)誤的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)Px軸上一動(dòng)點(diǎn),以點(diǎn)P為圓心,以1個(gè)單位長度為半徑作P,當(dāng)P與直線AB相切時(shí),點(diǎn)P的坐標(biāo)是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的直徑,C是半圓AB上一點(diǎn),連AC、OC,AD平分,交弧BCD,交OCE,連ODCD,下列結(jié)論:

①弧CD;②;③;④當(dāng)C是半圓的中點(diǎn)時(shí),則.其中正確的結(jié)論是(

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)P為圓心的圓弧與x軸交于A,B;兩點(diǎn),點(diǎn)P的坐標(biāo)為(4,2)點(diǎn)A的坐標(biāo)為(2,0)則點(diǎn)B的坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說:射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是(  )

A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上

B. 角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等

C. 三角形三條角平分線的交點(diǎn)到三條邊的距離相等

D. 以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩位同學(xué)利用燈光下的影子來測量一路燈A的高度,如圖,當(dāng)甲走到點(diǎn)C處時(shí),乙測得甲直立身高CD與其影子長CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點(diǎn)E處時(shí),甲直立身高EF的影子恰好是線段EG,并測得EG=2.5m.已知甲直立時(shí)的身高為1.75m,求路燈的高AB的長.(結(jié)果精確到0.1m

查看答案和解析>>

同步練習(xí)冊答案